Exploring Causal Factors Influencing Thai Consumers' Intention to Purchase Smart Home Products

Authors

  • Nitirote Suppakritsuwankul Faculty of Business Administration, Vongchavalitkul University, Nakhon Ratchasima, Thailand
  • Sukumarl Koednok Faculty of Business Administration, Vongchavalitkul University, Nakhon Ratchasima, Thailand
  • Chutiyaphak Warit Faculty of Business Administration, Vongchavalitkul University, Nakhon Ratchasima, Thailand

Keywords:

Compatibility, Social Influence, Facilitating Conditions, Purchasing Intention, TAM plus

Abstract

This research investigates the key factors influencing purchase intention within the Thai context. The study's objectives are twofold: (1) to develop a causal model that elucidates the factors impacting purchase intention for smart home products, and (2) to analyze the direct and indirect effects of these factors. The target population comprised technology-interested consumers aged 15-59 residing in Thailand's economic hubs. A multi-stage sampling approach yielded a sample size of 456 participants. Data collection employed a structured questionnaire. Structural equation modeling (SEM) techniques were utilized for model creation and data analysis.

The proposed model demonstrated a strong fit with the empirical data (χ²= 118.598, df = 106, p = 0.190, GFI = 0.978, NFI = 0.989, TLI = 0.997, CFI = 0.999, RMSEA = 0.016, RMR β= 0.048). Among the directly influencing factors, attitude (β= 0.64), facilitating conditions (β= 0.50), and social influence (β= 0.01) exhibited positive effects on purchase intention. While the direct influence of social influence was statistically insignificant, it exerted an indirect effect through perceived usefulness and attitude (β= 0.20).  The compatibility factor also indirectly influenced purchase intention through three pathways: (1) perceived usefulness and attitude (β= 0.08), (2) perceived ease of use and attitude (β= 0.17), and (3) perceived ease of use, perceived usefulness, and attitude (β= 0.04). This research contributes to the current understanding of smart home technology adoption among Thai consumers. The findings offer valuable insights for marketers and policymakers aiming to promote the proliferation of smart home products within the Thai market.

References

ฐานเศรษฐกิจ. (2562). สมาร์ตโฮม เพิ่มมูลค่าโครงการอสังหาริมทรัพย์. สืบค้นเมื่อ 20 เมษายน 2565 จาก https://www.thansettakij.com/property/384862

รังสรรค์ โฉมยา. (2549). สเกลคู่ มิติใหม่ในการใช้แบบวัดมาตราส่วนประมาณค่าแบบลิเคิร์ท. เทคโนโลยีสื่อสารการศึกษา, 13(1), 145-151.

สถาบันไฟฟ้าและอิเล็กทรอนิกส์. (2562). บ้านอัจฉริยะ (Smart Home) เทรนด์เทคโนโลยีที่ใกล้ตัว. สืบค้นเมื่อ 20 เมษายน 2565 จาก http://eiu.thaieei.com/box/Research/53/Smart%20Home10-07-2562.pdf

สำนักงานคณะกรรมการพัฒนาการเศรษฐกิจและสังคมแห่งชาติ. (2525). แผนพัฒนาเศรษฐกิจและสังคมแห่งชาติ ฉบับที่ 5 พ.ศ. 2525-2529. กรุงเทพฯ: สำนักงานคณะกรรมการพัฒนาการเศรษฐกิจและสังคมแห่งชาติ.

สำนักงานส่งเสริมการค้าในต่างประเทศ. (2019). แนวโน้มตลาดสมาร์ทโฮมและอุปกรณ์อัจฉริยะในอิตาลี. สืบค้นเมื่อ 20 เมษายน 2565 จาก http://www.ditp.go.th/contents_attach/300601/300601.pdf

A.T. Kearney Inc. (2016). The Battle for the Smart Home: Open to All. Retrieved April 20, 2022 from https://info.kearney.com/5/180/the-battle-for-the-smart-home/the-battle-for-the-smart-home-open-to-all.pdf

Aldossari, M. Q., & Sidorova, A. (2020). Consumer Acceptance of Internet of Things (IoT): Smart Home Context. Journal of Computer Information Systems, 60(6), 507-517. https://doi.org/10.1080/08874417.2018.1543000

Alolayan, B. (2014). Do I Really Have to Accept Smart Fridges? An empirical study. Paper presented at the ACHI 2014.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Feng, G. C., Su, X., Lin, Z., He, Y., Luo, N., & Zhang, Y. (2021). Determinants of Technology Acceptance: Two Model-Based Meta-Analytic Reviews. Journalism & Mass Communication Quarterly, 98(1), 83-104. https://doi.org/10.1177/1077699020952400

Gao, L., & Bai, X. (2014). A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific Journal of Marketing and Logistics, 26(2), 211-231. https://doi.org/10.1108/APJML-06-2013-0061

GFK Growth from Knowledge. (2018). GfK smart home study 2018. Retrieved April 20, 2022 from https://cdn2.hubspot.net/hubfs/2405078/cms-pdfs/fileadmin/user_upload/dyna_content/global

/documents/reports/gfk-smart-home-teaserdeck-global.pdf

Guner, H., & Acarturk, C. (2020). The use and acceptance of ICT by senior citizens: a comparison of technology acceptance model (TAM) for elderly and young adults. Universal Access in the Information Society, 19(2), 311-330. https://doi.org/10.1007/s10209-018-0642-4

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. 8th ed. CA: Cengage Learning.

Howard, J. A. (1994). Buyer behaviour in marketing strategy. Englewood Cliffs, NJ.: Prentice Hall.

Hubert, M., Blut, M., Brock, C., Zhang, R. W., Koch, V., & Riedl, R. (2019). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073-1098. https://doi.org/10.1108/EJM-12-2016-0794

Isaac, O., Abdullah, Z., Thurasamy, R., Mutahar, A., & Alrajawy, I. (2016). Perceived Usefulness, Perceived Ease of Use, Perceived Compatibility, and Net Benefits: an empirical study of internet usage among employees in Yemen. in the 7th International Conference Postgraduate Education (ICPE7), Shah Alam, Universiti Teknologi MARA (UiTM), Malaysia.

Jo, T. H., Ma, J. H., & Cha, S. H. (2021). Elderly Perception on the Internet of Things-Based Integrated Smart-Home System. Sensors (Basel), 21(4). https://doi.org/10.3390/s21041284

Jump, N. (1978). Psychometric theory. 2nd ed. New York: McGraw-Hill.

Kline, R. B. (2010). Principles and practice of structural equation modeling. 3rd ed. New York: The Guilford Press.

Lee, W., & Shin, S. (2019). An Empirical Study of Consumer Adoption of Internet of Things Services. International Journal of Engineering and Technology Innovation, 9(1), 11.

Mashal, I., Shuhaiber, A., & Daoud, M. (2020). Factors influencing the acceptance of smart homes in Jordan. International Journal of Electronic Marketing and Retailing, 11, 113. https://doi.org/10.1504/IJEMR.2020.106842

Nikou, S. (2019). Factors driving the adoption of smart home technology: An empirical assessment. Telematics and Informatics, 45, 101283. https://doi.org/10.1016/j.tele.2019.101283

Pal, D., Zhang, X., & Siyal, S. (2021). Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach. Technology in Society, 66, 101683. https://doi.org/10.1016/j.techsoc.2021.101683

Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive Approaches to User Acceptance of Internet of Things in a Smart Home Environment. IEEE Internet of Things Journal, 4(6), 2342-2350. https://doi.org/10.1109/JIOT.2017.2750765

Rahi, S., Mansour, O., Mustafa, M., Mahmoud, A., & Mi, A. F. (2019). Integration of UTAUT model in internet banking adoption context. Journal of Research in Interactive Marketing, 13(3), 411-435. https://doi.org/10.1108/JRIM-02-2018-0032

Rogers, E. M. (2010). Diffusion of Innovations. 4th ed. New York: Free Press.

Schiffman, L. G., & Kanuk, L. L. (2010). Consumer behavior. 10th ed. New York: Pearson Prentice Hall.

Shin, J., Park, Y., & Lee, D. (2018). Who will be smart home users? An analysis of adoption and diffusion of smart homes. Technological Forecasting and Social Change, 134, 246-253. https://doi.org/10.1016/j.techfore.2018.06.029

Shuhaiber, A., & Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58, 101110.

Statista. (2021). Smart Home - Thailand | Statista Market Forecast. Retrieved April 20, 2022 from https://www.statista.com/outlook/dmo/smart-home/thailand

Tsai, H.-T., Chien, J.-L., & Tsai, M.-T. (2014). The influences of system usability and user satisfaction on continued Internet banking services usage intention: empirical evidence from Taiwan. Electronic Commerce Research, 14(2), 137-169. https://doi.org/10.1007/s10660-014-9136-5

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

World Economic Forum. (2015). Industry Agenda In collaboration with Accenture Industrial Internet of Things: Unleashing the Potential of Connected Products and Services. Retrieved April 20, 2022 from https://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf

Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. https://doi.org/10.1108/IMDS-01-2016-0017

Zhang, W., & Liu, L. (2021). Unearthing consumers’ intention to adopt eco-friendly smart home services: an extended version of the theory of planned behavior model. Journal of Environmental Planning and Management, 65(2), 216-239. https://doi.org/10.1080/09640568.2021.1880379

Published

2024-09-06

Issue

Section

Research Articles