Pre-Qualification Model for Contractor Selection by FAHP
Main Article Content
Abstract
The objective of this study was to develop Pre-Qualification model for contractor selection using Fuzzy Analytic Hierarchy Process (FAHP). The FAHP generates a weight for each evaluation criterion according to the decision maker’s pairwise comparisons of the criteria. Base on the intuitive and subjective judgments of experts 8 persons from project manager 2 persons from construction manager 2 persons from quantity survey 2 persons and from contractors 2 persons. The expert’s creativity scores on a couple for the calculating weighted rating of the 5 eligibility factors. For example, the project control with 5 sub-factors (10 pairs of comparison partners), the human resources with 3 sub-factors (3 pairs of comparison partners), the material purchase with 2 sub-factors (1 pairs of comparison partners), the machine-tool-related with 3 sub-factors (3 pairs of comparison partners) and the safety and environment with 3 sub-factors (3 pairs of comparison partners) which over all 20 pairs become the input of the model. The weighted values of main factors of the project control, the human resources, the material purchase, the machine-tool-related and the safety and environment are 0.39, 0.22, 0.07, 0.23 and 0.09 respectively. In this study, the situation of technical assessment of contractors in 4 construction projects was determined. By comparing the results of the model with the results determined by the project owner. The results from the 1st project, the 2nd project and the 3rd project results reveal that as same the project owner, But the 4th project, the winner of the selection was changed from the contractor N to the contractor P. results from the contractor P had a higher total technical score than the contractor N. Finally, the model used to evaluate has clear details. More coverage than ever and remains consistent with the assessment results of the project owners.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articles published in the Journal of Architecture, Design, and Construction are the intellectual property of the Faculty of Architecture, Urban Planning, and Fine Arts, Mahasarakham University.
References
ธนกฤต อรัญดร และอรกมล วังอภิสิทธิ์. (2563). การจัดลำดับความสำคัญของโครงการลงทุนก่อสร้างและปรับปรุงถนนในจังหวัดสงขลา. วารสารวิชาการ
วิศวกรรมศาสตร์ ม.อบ., 14(1), 115-128.
นิธิเดช คูหาทองสัมฤทธิ. (2562).การประยุกต์ระบบตรรกศาสตร์คลุมเครือในการประเมินความเสี่ยง สำหรับการเลือกเส้นทางการขนส่งต่อเนื่องหลายรูปแบบที่เหมาะ
สม. วารสารวิจัยและพัฒนา มจธ., 42(4), 353-373.
วัชรินทร์ ขวัญซ้าย และไพจิตร ผาวัน. (2562). การตัดสินใจเลือกแบบหล่อคอนกรีตในงานก่อสร้างอาคารสูงด้วยกระบวนการลำดับชั้นเชิงวิเคราะห์. การประชุม
วิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 24., 10-12 กรกฎาคม 2562 จังหวัดอุดรธานี.
Abimbola, H. A., Bolanle, A. O., & Adebayo O. A. (2020). Performance analysis of fuzzy analytic hierarchy process multi-criteria decision
support models for contractor selection. Scientific African., 9, e00471.
Ahad, N., Shaghayegh, Y. & Hamid, A. (2016). Fuzzy AHP Model for Prequalification of Engineering Consultants in the Iranian Public
Procurement System. J. Constr. Eng. Manage., 10.1061/(ASCE)ME.1943-5479.0000489.
Chang DY. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research., 1996;95(3)
–655.
Holt, G. D., Olomolaiye, P. O., & Harris, F. C. (1994). Factors influencing UK construction clients choice of contractor. Build. Environ.,
(2), 241–248.
Jaman, I. A., Margaret, W. E. (2012). The impact of contractors’ attributes on construction project success: A post construction evaluation.
International Journal of Project Management., 31 (2013) 313–322.
Kai, C. G., Hui, H. G., & Heap, -Y. C. (2018). Integration Model of Fuzzy AHP and Life-Cycle Cost Analysis for Evaluating Highway
Infrastructure Investment. J. Infrastruct. Syst., 10.1061/(ASCE)IS.1943-555X.0000473.
Mohammad, R. A., Yagub, A., Mohammad, H. S., & Weng, T. C. (2017). A type-2 fuzzy set model for contractor prequalification.
Automation in Construction., 84 (2017) 356–366.
Ossama, H., & Khaled, N. (2013). Prequalification of Egyptian construction contractors using fuzzy-AHP models. Engineering Construction
and Architectural Management., Vol. 20: 381-405.
Sharareh, K., Behzad, R., & Bac, D. (2019). Application of Delphi Method in Identifying, Ranking, and Weighting Project Complexity
Indicators for Construction Projects. J. Leg. Aff. Dispute Resolut. Eng. Constr., 10.1061/(ASCE)LA.1943-4170.0000338.