Powering Financial Fraud Detection with Artificial Intelligence
Main Article Content
Abstract
Artificial intelligence and techniques such as Machine Learning, Behavioral Analytics, and Natural Language Processing, can power the financial fraud detection, which is a critical task in forensic accounting. Effective fraud detection amid a massive increase in financial data can help reduce damage and deter future fraudulent activities. This article discusses the challenges and risks involved, as well as the unintended consequences of developing and implementing artificial intelligence that need to be managed, including data quality and integrity, interpretability, privacy and compliance, resistance to change, costs and resources, and technology over-reliance. Accounting professionals should consider applying laws and risk management frameworks for artificial intelligence as a tool for fraud detection.
Article Details
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารสภาวิชาชีพบัญชี ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารสภาวิชาชีพบัญชี ถือเป็นลิขสิทธิ์ของวารสารสภาวิชาชีพบัญชี หากบุคคลหรือหน่วยงานใดต้องการนำข้อมูลทั้งหมดหรือบางส่วนไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารสภาวิชาชีพบัญชี ก่อนเท่านั้น
References
Boulieris, P., Pavlopoulos, J., Xenos, A., & Vassalos, V. (2024). Fraud detection with natural language
processing. Machine Learning, 113(3), 5087–5108. https://doi.org/10.1007/s10994-023-06354-5
Chaudhary, K., Yadav, J., & Mallick, B. (2012). A review of fraud detection techniques: Credit card.
International Journal of Computer Applications, 45(1), 39–41. https://doi.org/10.5120/6748-8991
Chou, B. (2023, July 3). The digital sentry: How AI will revolutionize financial fraud investigation. Forbes.
https://www.forbes.com/councils/forbestechcouncil/2023/07/03/the-digital-sentry-how-ai-will-rev
olutionize-financial-fraud-investigation/
Curry, J. (2025, January–February). Behavioral analytics could’ve detected and prevented Evergrande
fraud. Fraud Magazine, 40(1). https://www.fraud-magazine.com/article.aspx?id=4295024317
Hong, Z. (2024, April 20). Fraud detection with machine learning: Identifying suspicious patterns in
financialtransactions. Medium. https://medium.com/@zhonghong9998/fraud-detection-with-
machine-learning-identifying-suspicious-patterns-in-financial-transactions-8558f3f1e22a
IBM. (2024, August 9). What is artificial intelligence (AI)? IBM. https://www.ibm.com/think/topics/
artificial-intelligence
InfoSys. (2025, January 4). Behavioural analytics for fraud detection. InfoSys BPM.
blogs/bpm-analytics/behavioural-analytics-fraud-detection.html
InfoSys. (n.d.). Fraud detection technologies: Make AI and machine learning work for you. BPM
Analytics.https://www.infosysbpm.com/blogs/bpm-analytics/financial-fraud-detection.html
International Association of Independent Accounting Firms. (2024, July 2). The role of forensic
accounting in fraud detection. International Association of Independent Accounting Firms.
https://www.inaa.org/the-role-of-forensic-accounting-in-fraud-detection
Kasztelnik, K., & Jermakowicz, E. K. (2024, July). Financial statement fraud detection in the digital age:
Artificial intelligence versus traditional methodologies. The CPA Journal. https://www.cpajournal.com/
/07/23/financial-statement-fraud-detection-in-the-digital-age-2/
Kosinski, M., & Scapicchio, M. (2024, September 20). What is the Artificial Intelligence Act of the European
Union (EU AI Act)? IBM. https://www.ibm.com/think/topics/eu-ai-act
Lanz, J. (2024, December). Worst AI risk-management practices. The CPA Journal.
https://www.cpajournal.com/2024/12/31/worst-ai-risk-management-practices/
Martinez, A. (2023, May 10). Getting value from NLP for fraud detection. Forbes.
https://www.forbes.com/councils/forbesbusinesscouncil/2023/05/10/getting-value-from-nlp-for-
fraud-detection/
Mucci, T., & Stryker, C. (2024, October 10). What is AI governance? IBM. https://www.ibm.com/think/
topics/ai-governance
National Institute of Standards and Technology. (2023). Artificial intelligence risk management
framework (AI RMF 1.0). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.AI.100-1
National Institute of Standards and Technology. (2024). Artificial intelligence risk management
framework: Generative artificial intelligence profile. https://doi.org/10.6028/NIST.AI.600-1
PwC. (2019). A practical guide to responsible artificial intelligence (AI). PwC.
https://www.pwc.com/gx/en/issues/data-and-analytics/artificial-intelligence/what-is-responsible-
ai/responsible-ai-practical-guide.pdf
Singleton, T., Singleton, A., Bologna, J., & Lindquist, R. (2006). Fraud auditing and forensic accounting.
John Wiley & Sons.Srijunpetch, S. (2010). Get to know forensic accounting. Journal of Accounting
Profession, 6(17), 22–28.
Supphatada, S. (2007). Let’s blow the whistle. Journal of Accounting Profession, 3(7), 13–15.
https://www.jap.tbs.tu.ac.th/files/Article/Jap07/Column/JAP07SomchaiC.pdf
Supphatada, S. (2020). Forensic accounting: Integrative knowledge for the digital era. Supphatada,
Somchai.The Securities and Exchange Commission, Thailand. (2024, September 18). SEC news. The
Securities andExchange Commission, Thailand. https://www.sec.or.th/TH/Pages/News_Detail.aspx?
NewsNo=197&NewsYear=2567&Lang=TH
Xu, F., Uszkoreit, H., Du, Y., & Fan, W. (2019). Explainable AI: A brief survey on history, research areas,
approaches, and challenges. In J. Tang, M.-Y. Kan, D. Zhao, S. Li, & H. Zan (Eds.), Natural language
processing and Chinese computing (Vol. 11839, pp. 563–574). Springer. https://doi.org/10.1007/978-3-
-32236-6_51