Development of Multidimensional Test of Collaborative Problem-Solving Skills for Lower Secondary School Students
Main Article Content
Abstract
This study aimed to develop a multidimensional scale of collaborative problem- solving skills for lower secondary school students. The population consisted of 405,605 lower secondary school students under the Secondary Educational Service Area Offices in the academic year 2018. The sample comprised 500 lower secondary school students under the Secondary Educational Service Area Offices in the academic year 2018 obtained through stratified random sampling.
The findings were as follows: The test had 27 items. The social skills had 3 indicators with 18 items. The thinking skills had 2 indicators with 9 items. The examination of the structural validity of the multidimensional model revealed that the statistical value of G2 was lower than that of the unidimensional model (G2=19,950.157 and 19,963.314, respectively). The AIC value of the multidimensional model was lower than that of the unidimensional model (AIC = 20,064.157 and 20,073.314, respectively). The result of the statistical hypothesis test with chi-square revealed more consistency between the multidimensional model and the empirical data than that of the unidimensional model (2 =13.157, df = 2, a = .01). The result of validation through each statistical analysis showed that the values of OUTFIT MNSQ were between .650 and 1.170. The values of INFIT MNSQ were between .810 and 1.350. The value of EAP reliability was .787 in social skills, and the value of EAP reliability in thinking skills was .767.
Article Details
The content and information contained in the published article in the Journal of Educational Measurement Mahasarakham University represent the opinions and responsibilities of the authors directly. The editorial board of the journal is not necessarily in agreement with or responsible for any of the content.
The articles, data, content, images, etc. that have been published in the Journal of Educational Measurement Mahasarakham University are copyrighted by the journal. If any individual or organization wishes to reproduce or perform any actions involving the entirety or any part of the content, they must obtain written permission from the Journal of Educational Measurement Mahasarakham University.
References
กระทรวงศึกษาธิการ. สถิติทางการศึกษา 2561. [Internet] 2018 [updated 2018 June 30; cited 2018 July 11]. Available from: https://www.bopp-obec.info/home/?page_id=30088.
นงลักษณ์ วิรัชชัย. (2546). Measurement in Nursing Research ในเอกสารประกอบการบรรยายวิชา 252722 Advanced Nursing Research Methods II. วิทยานิพนธ์ปริญญาปรัชญาดุษฎีบัณฑิต สาขาวิชาการพยาบาล คณะพยาบาลศาสตร์ มหาวิทยาลัยขอนแก่น.
ล้วน สายยศ และ อังคณา สายยศ. (2543). การวัดด้านจิตพิสัย. กรุงเทพฯ: สุวิริยาสาสน.
ศิริชัย กาญจนวาสี. (2550). ทฤษฎีการทดสอบแนวใหม่ (Modern Test Theories). กรุงเทพฯ: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.
อรพินทร์ ชูชม. (2545). การสร้างและพัฒนาเครื่องมือวัดทางพฤติกรรมศาสตร์. กรุงเทพฯ: สถาบันวิจัยพฤติกรรมศาสตร มหาวิทยาลัยศรีนครินทรวิโรฒ.
Allen, D. D., & Wilson, M. (2006). Introducing multidimensional item response modeling in health behavior and health education research. Health Education Research, 21(suppl_1), i73-i84.
Baghaei, P. (2012). The application of multidimensional Rasch models in large scale assessment and validation: An empirical example. Electronic Journal of Research in Educational Psychology, 10(1), 233-252.
Briggs, D. C. & Wilson, M. (2003). An Introduction to multidimensional measurement using Rasch models. Journal of Applied Measurement, 4(1), 87-. 100.
Christensen, J. F., & Gomila, A. (2012). Moral dilemmas in cognitive neuroscience of moral decision-making: a principled review. Neuroscience & Biobehavioral Reviews, 36(4), 1249-1264.
Frey & Seitz, N.N. (2009). Multidimensional Adaptive Testing in Educational and Psychological Measurement: Current State and Future Challenges. Studies in Educational Evaluation. 35(2),89-94.
Greiff, S., Holt, D., & Funke, J. (2013). Perspectives on problem solving in cognitive research and educational assessment: analytical, interactive, and collaborative problem solving. Journal of Problem Solving, 5(2), 71-91.
Hambleton, R. H., Swaminathan, H., & Rogers, H. J. (1991). Foundations of item response theory. Newbury Park, CA: SAGE.
Hesse, Friedrich, et al. (2015). A framework for teachable collaborative problem-solving skills. In: Assessment and teaching of 21st century skills. Springer, Dordrecht. p. 37-56.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.). New Jersey: Pearson Education.
Yin, Khoo Yin. (2015). collaborative problem solving promotes students' interest. Journal of Economics and Economic Education Research, 16(1), 158-167.
Kuo, B. C., Daud, M., & Yang, C. W. (2015). Multidimensional computerized adaptive testing for Indonesia junior high school biology. Eurasia Journal of Mathematics, Science and Technology Education. 11(5), 1105-1118.
Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85-10.
Lunz, M.E., Wright, B.D.,& Linacre, J. M. (1990). Measuring the impact of judge severity on examination scores. Applied Measurement in Education, 3, 331–345.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory. New York: McGraw-Hill.
OECD. (2013). PISA 2015 draft collaborative problem solving framework. Paris: OECD.
Panich, V. (2012). Learning Strategies for Student in 21st Century. Bangkok: Sod sri-Saritwong Foundation. (in Thai)
Reise, S. P., & Yu, J. (1990). Parameter recovery in the graded response model using MULTILOG. Journal of Educational Measurement, 27(2), 133-144.
Reise, S.P., & Yu,J.(1990). Parameter recovery in the graded response model using MULTILOG. Journal of Educational Measurement, 27(2), 133-144.
Rovinelli, R.J. and Hambleton,R.K. (1977). On the Use Content Specialists in the Assessment of Criteria Reference Test Item Validity, Dutch Journal of Educational Research, 2, 49.
Smith, A. B., Rush, R., Fallowfield, L. J., Velikova, G., & Sharpe, M. (2008). Rasch fit statistics and sample size considerations for polytomous data. BMC Medical Research Methodology, 8:33, doi: 10.1186/1471-2288-8-33.
Wilson, M., and Hoskens, M. (2005). Multidimensional item response: Multimethod/ Multitrait perspective. In S. Alagumalai, D.D. Curtis, and N. Hungi (eds.), pp.287-307. Applied rasch measurement: A book of exemplars papers in honors of John P.Keeves. Netherlands: Springer.
Wright, B.D., Linacre, J. M., Gustafson, J.E.,& Martin-Lof, P. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions. 13(3), 122-128.