EEG Data analysis and Feature classification of Mu and Beta Rhythm Using BCI2000 Software Platform

Authors

  • ธงชัย จินาพันธ์ วิทยาลัยวิทยาการวิจัยและวิทยาการปัญญา มหาวิทยาลัยบูรพา
  • ดุสิต โพธิพันธุ์ วิทยาลัยวิทยาการวิจัยและวิทยาการปัญญา มหาวิทยาลัยบูรพา
  • ธวัชชัย ศรีพรงาม วิทยาลัยวิทยาการวิจัยและวิทยาการปัญญา มหาวิทยาลัยบูรพา
  • ณัฐพร พวงเกตุ วิทยาลัยวิทยาการวิจัยและวิทยาการปัญญา มหาวิทยาลัยบูรพา

Keywords:

BCI2000, EEG signal

Abstract

The development of brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and design of application algorithms. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress such as signal recording until user application protocols. In response to this demand, BCI2000 software platform has been established for general-purpose BCI research and development. This article is intended to describe to investigators, biomedical engineers, and computer engineers the concepts that the BCI2000 system is based upon and gives examples of successful BCI implementations using this system

References

Brunner C., Andreoni G., Bianchi L., Blankertz B., Breitwieser C., Kanoh S., Kothe C.A., L´ecuyer A., Makeig S., Mellinger J., Perego P., Renard Y., Schalk G.,Susila I.P., Venthur B., and M¨uller-Putz G.R.(2013), BCI Software Platforms. In Towards Practical Brain-Computer Interfaces. Biological and Medical Physics; 2013

Wolpaw, J.R., Birbaumerc, N., McFarland, D.J., Pfurtschellere, G., Vaughan, T.M. (2002). Brain–computer interfaces for communication and control. in Clinical Neurophysiology 113 , 767–791.

Birbaumer, N., (2006). Breaking the silence: Brain–computer interfaces (BCI) for communication and motor control. Psychophysiology, 43, s. 517–532.

Wessel, M., (2006). Pioneering research into Brain Computer Interfaces.Delft University of Technology, Faculty of Electrical Engineering, Mathematics, and Computer Science,Mediametics: Man-Machine Interaction,Mekelweg 4,2628 CD Delft, The Netherlands.

Wolpaw, J.R & McFarland, D.J. (2004). Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101:17849-17854.

Pfurtscheller, G., Brunner, C., Schl¨ogl, A., & Silva, F. L., (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31 (1), 153–159.

Brunner C., Andreoni G., Bianchi L., Blankertz B., Breitwieser C., Kanoh S.,Kothe C.A., L´ecuyer A., Makeig S., Mellinger J., Perego P., Renard Y., Schalk G.,Susila I.P., Venthur B., and M¨uller-Putz G.R.(2013), BCI Software Platforms. In Towards Practical Brain-Computer Interfaces. Biological and Medical Physics; 2013

Buneo A.C., Andersen A.R..,(2005), The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements., Harrington Department of Bioengineering, Arizona State University, P.O. Box 879709,

Schalk G., Hinterberger T., McFarland D.J.,Mellinger J., (2004).,Software Design Document for a specific implementation of ‘BCI2000’., New York State Department of HealthWadsworth Center,Laboratory of Nervous Systems Disorders,Eberhard–Karls–Universit¨at T¨ubingen Medizinische Fakult¨at Institut f¨ur Medizinische Psychologie,February 2000–July 2004

Downloads

Published

2016-06-30

How to Cite

จินาพันธ์ ธ. ., โพธิพันธุ์ ด. ., ศรีพรงาม ธ., & พวงเกตุ ณ. (2016). EEG Data analysis and Feature classification of Mu and Beta Rhythm Using BCI2000 Software Platform. DRIRDI Research for Community Service Journal, 2(2), 47–54. retrieved from https://so02.tci-thaijo.org/index.php/DRURDI/article/view/252075

Issue

Section

Research Articles