Enhancing Working Memory in Preschool Children with Dyscalculia Using a Numerical Development and Embodied Cognition Program
Keywords:
working memory, children with dyscalculia, embodied cognitionAbstract
This research aimed to compare working memory scores of preschool children with dyscalculia who attend the numerical development and embodied cognition program and those who attend regular classroom activities. The participants consisted of 100 third-year kindergartens with dyscalculia. The samples were divided randomly and equally into experimental and control groups (50 children each). The research instruments were a numerical development and embodied cognition program, a backward digit span task, and a backward Corsi-block task. Descriptive statistics, one-way MANCOVA, and effect size were used to analyze the data. The finding revealed that the experimental group's post-test mean accuracy score for working memory was significantly higher than the control group's at a .05 level of significance. The result suggested the educational program for promoting numerical development and embodied cognition for enhancing working memory of children at risk of dyscalculia. The overall effect size indicated a significant difference (ηp2 = 0.28).
Downloads
References
พีร วงศ์อุปราช. (2560). รายงานการวิจัยโครงการการศึกษาเชิงจิตประสาทวิทยาและการพัฒนาแบบคัดกรองเน้นกระบวนการทางปัญญาในเด็กที่เสี่ยงต่อภาวะความบกพร่องทางการเรียนรู้ด้าน
คณิตศาสตร์ . ชลบุรี : มหาวิทยาลัยบูรพา.
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.). (2561). ผลการประเมิน PISA 2015 วิทยาศาสตร์การอ่าน และคณิตศาสตร์ ความเป็นเลิศ และความเท่าเทียมทางการศึกษา.
กรุงเทพฯ : สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี(สสวท.) กระทรวงศึกษาธิการ.
Ashcraft, M. H., & Ridley, K. S. (2005). Math anxiety and its cognitive consequences: A tutorial review, p. 50
Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.) Decision SupportSystems (pp. 455–467): Handbook of mathematical cognition (Hove, UK: Psychology Press).
Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS biology, 4 (5), p. 125.
Dackermann, T., Fischer, U., Nuerk, H.-C., Cress, U., & Moeller, K. (2017). Applying embodiedcognition: from useful interventions and their theoretical
underpinnings to practical applications. Zdm, 49 (4), pp. 545-557.
Ehrler, D. J., & McGhee, R. L. (2008). PTONI: Primary test of nonverbal intelligence: Pro-Ed Austin, TX.
Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The
Number Sets Test. Journal of Psychoeducational Assessment, 27, pp. 265–279.
Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 1 (4), pp. 586-596.
Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. (2010). Multivariate Data Analysis. (7th Edition). NJ : Prentice Hall.
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental psychology, 45 (3), p. 850.
Kaufmann, L. (2008). Dyscalculia: neuroscience and education. Educational research; a review for teachers and all concerned with progress in education, 50 (2),
pp. 163-175.
Kaufmann, L., Mazzocco, M.M., Dowker, A., von Aster, M., Gobel, S.M., Grabner, R.H., & Nuerk, H.C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, pp. 106-113.
Kucian, K., Grond, U., Schönmann, C., Henzi, B., Rotzer, S., Gälli, M., & Aster, M. v. (2010). Training in children with developmental dyscalculia. International Journal of Psychophysiology, 77 (3), p. 228.
Layes, S., Lalonde, R., Bouakkaz, Y., & Rebai, M. (2018). Effectiveness of working memory training among children with dyscalculia: evidence for transfer effects on
mathematical achievement-a pilot study. Cognitive processing, 19 (3), pp. 375-385.
Montoya, M. F., Susperreguy, M. I., Dinarte, L., Morrison, F. J., San Martín, E., Rojas-Barahona, C. A., & Förster, C. E. (2019). Executive function in Chilean preschool
children: Do short-term memory, working memory, and response inhibition contribute differentially to early academic skills?. Early Childhood Research Quarterly, 46, pp. 187-200.
Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6 (6), pp. 491-505.
Oh-Uchi, A., Kawahara, J.-i., & Sugano, L. (2010). Attentional capture and metaattentional judgment:a study of young children, parents, and university students. Psychologia, 53 (2), pp. 114-124.
Oviatt, S., Lin, J., & Sriramulu, A. (2021). I know what you know: What hand movements reveal about domain expertise. ACM Transactions on Interactive Intelligent Systems, 11 (1). pp. 1-26.
Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88 (4), pp. 348-367.
Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22, pp. 81–98.
Raghubar, K. P., Barnes, M. A., & Hecht, S.A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches.Learning and Individual Differences, 20 (2), p. 113.
Schaefer, S. (2018). Embodiment Helps Children Solve a Spatial Working Memory Task: Interactions with Age and Gender. Journal of Cognitive Enhancement, 3,
p. 105.
Schaefer, S. (2019). Embodiment Helps Children Solve a Spatial Working Memory Task: Interactions with Age and Gender. J Cogn Enhanc, 3, pp. 233–244.
Shalev, R. S., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric neurology, 24 (5), pp. 337-342.
Swanson, H. L. (2006). Cross-sectional and incremental changes in working memory and mathematical problem solving. Journal of Educational Psychology, 98 (2),
p. 265.
Turoman, N., Tivadar, R. I., Retsa, C., Maillard, A. M., Scerif, G., & Matusz, P. J. (2021). The development of attentional control mechanisms in multisensory
environments. Developmental Cognitive Neuroscience, 48, pp. 1-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dhonburi Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ มหาวิทยาลัยราชภัฏธนบุรี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฏธนบุรีและบุคลากรท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว