Depth of rxy Value: In Case rxy Value = 0.00
Main Article Content
Abstract
If calculating the value of rxy yields 0.00, then X and Y are definitely not linearly correlated. And if these ordered pairs are graphed into rectangular coordinate, they will always look like a symmetrical figure of 1 axis or 2 axes that are parallel to the X axis or the Y axis or both. And if the ordered pairs that are in the same straight line are parallel to only the X axis or Y axis, it will not be able to show how to calculate the rxy value which, by the above principles, must be equal to 0.00. The reason is that when we substitute the values from the ordered pairs that are in the same straight line into the formula of rxy, then the denominator of the formula is 0. So it can be said that it is difficult to explain.
What is more difficult to understand is the general transformation of a two-variable linear equation, Ax + By + C = 0, into a predictive equation, namely y = or y = bx + a, whether or not the value is 0.00. To explain this, the aforementioned issue should be divided into 4 cases as follows:
Case 1: If A, B and C ≠ 0, the graph will have a slope such as Ax + By + C = 0 or y = bx + a. Example: -3x + 2y - 6 = 0 or y =
Case 2: If A or B ≠ 0 but C = 0, the graph will have a slope such as Ax + By + 0 = 0 or y = bx. Examples: -3x + 2y = 0 or y =
Case 3: If A or B = 0 and C = 0, the graph which is the X axis (if A = 0) or the Y axis (if B = 0) then has no slope such as (0)x + By + 0 = 0 or y = 0. Examples: (0)x + 5y = 0 or y = 0.
Case 4: If A or B = 0 but C ≠ 0, the graph is parallel to the X or the Y axis, so there is no slope such as (0) x + By + C = 0 or y = (0) x + C. Examples: (0)x - 4y +12 = 0 or y = 3
In case 4, learners are confused and do not understand the reason for the form of these equations because the explanation lacks the use of equation in the form of y = , given A = 0 or from the example of real equation: y =
etc.
Downloads
Article Details
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารการวัดผลการศึกษา มหาวิทยาลัยมหาสารคาม ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารการวัดผลการศึกษา มหาวิทยาลัยมหาสารคาม ถือเป็นลิขสิทธิ์ของวารสารการวัดผลการศึกษา มหาวิทยาลัยมหาสารคาม หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนใดส่วนหนึ่งไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารการวัดผลการศึกษา มหาวิทยาลัยมหาสารคาม ก่อนเท่านั้น
References
บุญชม ศรีสะอาด และคณะ. (2555). วิธีการทางสถิติสำหรับการวิจัย. พิมพ์ครั้งที่ 6. มหาสารคาม : คณะศึกษาศาสตร์ มหาวิทยาลัยมหาสารคาม.
สมนึก ภัททิยธนี. (2562). การวัดผลการศึกษา. พิมพ์ครั้งที่ 13. กาฬสินธุ์ : ประสานการพิมพ์.
สมนึก ภัททิยธนี. (2555). คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 3. พิมพ์ครั้งที่ 1 กาฬสินธุ์ : ประสานการพิมพ์,
สมนึก ภัททิยธนี. (2559). สิ่งที่น่ารู้เกี่ยวกับ . วารสารการวัดผลการศึกษา มหาวิทยาลัยมหาสารคาม, 22(2), 3–16.