ความเป็นไปได้ในการลดก๊าซคาร์บอนไดออกไซด์ด้วยระบบบำบัดน้ำเสียแบบชีวภาพจากโรงงานอุตสาหกรรม

ผู้แต่ง

  • Chitsanuphong Pratum ชิษณุพงศ์ ประทุม Faculty of Environment and Resource Studies, Mahidol University

DOI:

https://doi.org/10.14456/jem.2015.14

บทคัดย่อ

ก๊าซคาร์บอนไดออกไซด์ เป็นหนึ่งในก๊าซเรือนกระจกที่มีความสำคัญซึ่งส่งผลต่อการเพิ่มขึ้นของสภาวะโลกร้อน โดยก๊าซคาร์บอนไดออกไซด์ที่ปล่อยออกมาจากการเผาไหม้เชื้อเพลิงทำให้เกิดภาวะโลกร้อนมากถึงร้อยละ 87 เพื่อลดปริมาณก๊าซคาร์บอนไดออกไซด์ที่ปล่อยออกสู่ชั้นบรรยากาศโดยเฉพาะอย่างยิ่งจากแหล่งโรงงานอุตสาหกรรม ซึ่งการลดปริมาณก๊าซคาร์บอนไดออกไซด์จากแหล่งดังกล่าวสามารถทำงานได้ในระบบบำบัดน้ำเสียแบบชีวภาพ โดยระบบบำบัดน้ำเสียแบบชีวภาพถือได้ว่าเป็นส่วนที่สำคัญในการบำบัดน้ำเสียจากโรงงานอุตสาหกรรม ทั้งยังสามารถนำมาใช้ในการลดปริมาณก๊าซคาร์บอนไดออกไซด์ กลไกสำคัญในการลดปริมาณก๊าซคาร์บอนไดออกไซด์ ได้แก่ จุลินทรีย์สังเคราะห์แสงได้ ซึ่งมีอยู่หลากหลายชนิดที่สามารถอาศัยอยู่ได้ในระบบบำบัดน้ำเสียแบบชีวภาพและเปลี่ยนก๊าซคาร์บอนไดออกไซด์ให้กลายเป็นสารชีวมวล งานศึกษานี้มีวัตถุประสงค์ ในการรวบรวมความเป็นไปได้ของการลดปริมาณก๊าซคาร์บอนไดออกไซด์โดยใช้ระบบบำบัดน้ำเสียแบบชีวภาพซึ่งสามารถนำมาใช้เป็นแนวคิดที่จะช่วยให้โรงงานอุตสาหกรรมเข้าใจกระบวนการลดปริมาณก๊าซคาร์บอนไดออกไซด์

References

Abodeely. J., Stevens, D., Ray, A., Schaller, K. & Newby, D. (2013). Algal Supply System Design - Harmonized Version. (No. INL/EXT-13-28890), Idaho National Laboratory (INL).

Akashi, O., Hanaoka, T., Matsuoka, Y. & Kainuma, M. (2011). A projection for global CO2 emissions from the industrial sector through 2030 based on activity level and technology changes. Energy, 36, 1855 – 1867.

Akkerman, I., Janssen, M., Rocha, J., & Wijffels, R. H. (2002). Photobiological hydrogen production:photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27, 1195–1208

Allam, R., Bolland, O., Davison, J., Feron, P., Goede, F., Herrera, A.,… & Williams, R. (2005). Capture of CO2. In B. Metz, O. Davidson, H. C. de Coninck, M. Loos & L. A. Meyer (Eds.), IPCC Special Report on Carbon Dioxide Capture and Storage (pp. 105 – 178). Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press.

Al-Traboulsi, M., Sjögersten, S., Colls, J., Steven, M., Craigon, J., & Black, C. (2012). Potential impact of CO2 leakage from carbon capture and storage (CCS) systems on growth and yield in spring field bean, Environmental and Experimental Botany, 80, 43–53.

Aresta, M., Dibenedetto, A., & Barberio, G. (2005). Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Processing Technology, 86, 1679 – 1693.

Baral, S. S., Singh, K., & Sharma, P. (2015). The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renewable and Sustainable Energy Reviews, 49, 1061 –1074

Beardall, J., & Raven, J. A. (2004). The potential effects of global climate change on microalgal photosynthesis,growth and ecology. Phycologia, 43(1), 26-40.

Benemann, J. R. (1997). CO2 mitigation with microalgae systems. Energy Conversion and Management, 38, S475– S479.

Bradshaw, J., Chen, Z., Garg, A., Gomez, D., Rogner, H. H., Simbeck, D., & Williams, R. (2005). Sources of CO2. In B. Metz, O. Davidson, H. de Coninck, M. Loos, & L. Meyer (Eds.), IPCC Special Report on Carbon Dioxide Capture and Storage (pp. 75 – 104). Cambridge; New York: Cambridge University Press.

Brennan, L. & Owende, P. (2010). Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557 – 577.

Brown, L. M. (1996). Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion and Management, 37, 1363–1367.

Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology progress, 22(6), 1490 - 1506.

Chae, S. R., Hwang, E. J. & Shin, H. S. (2006). Single cell protein production of Euglenagracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technology, 97, 322–329.

Chiu, S-Y., Kao, C-Y. Chen, C-H., Kuan, T-C., Ong, S-C., & Lin, C-S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389–3396.

Chiu, S-Y., Kao, C-Y., Tsai, M-T., Ong, S-C., Chen, C-H., & Lin, C-S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100, 833–838.

Chun-Yen, C., Kuei-Ling, Y., & Aisyah, R. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71 – 81.

CO2CRC (2015). Injecting the CO2. Retrieved August 2, 2015, from http://goo.gl/Ux9Mq8

Cole, J. A., Mata, L., Paul, A. N. & de Nys, R. (2013). Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae. Global Change Biology Bioenergy, 637 – 645.

Edwards, J. H. (1995). Potential sources of CO2 and the options for its large-scale utilization now and in the future. Catalysis Today, 23, 59 – 66.

European Commission. (2013). Algae to capture CO2. Retrieved July 17, 2015, from http://cordis.europa.eu/news/rcn/35593_en.html

Fridlyand, L. E. (1997). Model of CO2 concentrating mechanisms in microalgae taking into account the cell and chloroplast structure. Biosystems, 44, 41-57.

Gibbins, J. & Chalmers, H. (2008). Carbon capture and storage, Energy Policy, 36, 4317 – 4322.

Giordano, M., & Bowes, G. (1997). Gas exchanges, metabolism, and morphology of Dunaliella salina in response to the CO2 concentration and nitrogen source used for growth. Plant Physiology, 115, 1049–1056.

Henrikson, R. (2011). Rediscovery of a 3.5 Billion year old immortal life form. Retrieved August 6, 2015, from http://goo.gl/yJYXoZ

Hu, Q., Kurano, N., Kawachi, M., Iwasaki, I., & Miyachi, S. (1998). Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Applied Microbiology and Biotechnology, 49, 655–662.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M, & Seibert, M. (2008). Microalgal triacylglycerols as feed stocks for biofuel production: perspectives and advances, Plant Journal, 54, 621 – 639.

Huaman, R. N. E., & Jun, T. X. (2014). Energy related CO2 emissions and the progress on CCS projects: a review. Renewable and Sustainable Energy Reviews, 31, 368 – 385.

Huntley, M., & Redalje, D. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change, 12, 573–608.

International Energy Agency. (2014). CO2 emissions from fuel combustion HIGHLIGHTS (2013 edition). IEA Publications.

Israel, A., Gavrieli, J., Glazer, A., & Friedlander, M. (2005). Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture, 249, 311–316.

Iwasaki, I., Hu, Q., Kurano, N., & Miyachi, S. (1998). Effect of extremely high- CO2 stress on energy distribution between photosystem I and photosystem II in a high- CO2 tolerant green alga, Chlorococcum littorale and the in tolerant green alga Stichococcus bacillaris. Journal of Photochemistry and Photobiology B: Biology, 44, 184–190.

Jacob-Lopes, E., Cacia, L. M., Lacerda, F., & Franco, T. T. (2008). Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochemical Engineering Journal, 40, 27–34.

Ji, M. K., Abou-Shanab, R. A., Kim, S. H., Salama, E. S., Lee, S. H., Kabra, A. N.,... & Jeon, B. H. (2013). Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 58, 142-148.

Kadam, K. L. (1997). Power Plant Flue Gas as a Source of CO2 for Microalgae Cultivation: Economic Impact of Different Process Options. Energy Conversion and Management, 38, S505 – S510.

Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S-Y., & Yamaberi K. (1994). CO2 fixation and oil production using micro-algae. Journal of Fermentation and Bioengineering, 78, 479–482.

Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H., & Miyachi, S. (1996). Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and Management, 36, 689–692.

Lee, J. M., Gillis, J. M., & Hwang, J-Y. (2003). Carbon dioxide mitigation by microalgal photosynthesis. Bulletin of the Korean Chemical Society, 24(12), 1763-1766.

Levine, R. B., Pinnarat, T., & Savage, P. E. (2010). Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels, 24(9), 5235 – 5243.

Lu, H. (2013). China’s Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces. ECEEE Industrial Summer Study, Arnhem, the Netherlands, September 11-14, 2012

Maedeh, M., Pooya, L., Zainal, A. Z., & Abdul, R. M. (2014) Capture of carbon dioxide from flue/fuel gas using dolomite under microwave irradiation, Chemical Engineering Journal, 240, 169–178.

Marinho-Soriano, E., Morales, C. & Moreira, W. S. C. (2002). Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquaculture Research, 33, 1081 – 1086.

Matsumoto, H., Hamasaki, A., Sioji N., & Ikuta, Y. (1997). Influence of CO2, SO2, and NO in flue gas on microalgae productivity. Journal of Chemical Engineering of Japan, 30, 620–624.

Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant science, 177(4), 272 – 280.

Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. New York : Cambridge University Press.

Milner, J. L., Cmeroon, J. C., Page, L. E. Benson, S. M., & Pakrasi, H. B. (2009). Report from Workshop on Biological Capture and Utilization of CO2. Charlse F Knight Center, Washington University in St Louis.

Mittal, A. (2011). Biological wastewater treatment. Water Today, 32 – 44. Retrieved August 9, 2015, from http://goo.gl/hLtX1y

Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129, 439–445.

Moroney, J. M., & Somanchi, A. (1999). How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol, 119, 9-16.

Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M. & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843 - 862.

Olaizola, M., Bridges, T., Flores, S., Griswold, L., Morency, J., & Nakamura, T. (2004). Microalgae removal of CO2 from flue gases: CO2 capture from a coal combustor. Paper presented at the Third Annual Conference on Carbon Capture and Sequestration, Alexandria, VA.

Ono. E., & Cuello, J. L. (2007). Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems Engineering, 96, 129–134.

Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, M., Smith Jr., R. L., & Inomata, H. (2009). Effects of inorganic carbon on photoautotrophic growth of microalgae Chlorococcum littorale. Biotechnology Progress, 25, 492-499.

Packer, M. (2009). Algal of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand strategy and policy. Energy Policy, 37, 3428 – 3437.

Papazi, A., Makridis, P., Divanach, P., & Kotzabasis, K. (2008). Bioenegetic changes in microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomas production. Physiologia Plantarum, 132, 338-349.

Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource technology, 102(1), 35-42.

Pradhan, L., Bhattacharjee, V., Mitra, R., Bhattacharya, I., & Chowdhury, R. (2015). Biosequestration of CO2 using power plant algae (Rhizoclonium hieroglyphicum JUCHE2) in a Flat Plate Photobio-Bubble-Reactor – Experimental and modeling, Chemical Engineering Journal, 275, 381 – 390.

Qiang, H., Zarmi, Y., & Richmond, A. (1998). Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). European Journal of Phycology, 33(2), 165-171.

Reinfelder, J. R., Kraepiel, M. A., & Morel, F. M. M. (2000). Unicellular C4 photosynthesis in marine diatom. Nature, 407, 996-999.

Schnackenberg, J., Ikemoto, H., & Miyachi, S. (1996). Photosynthesis and hydrogen evolution under stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale. Journal of Photochemistry and Photobiology B: Biology, 34(1), 59 - 62.

Scragg, A. H., Illman, A. M., Carden A., & Shales, S. W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy, 23, 67–73.

Shammas, N. K. & Wang, L. K. (2009). Oxidation Ditch. In L. K. Wang, N. C. Pereira, Y. T. Hung, & N. K. Shammas (Eds.), Handbook of Environmental Engineering, Volume 8: Biological Treatment Processes (pp. 513 – 538). New York: Humana Press.

Smith, R. G., & Bidwell, R. G. S. (1980). Mechanism of photosynthetic carbon dioxide uptake by red microalgae Chrondrus scrisps. Plant physiology, 89, 93-99.

Stephan, R. E., Shockey, D. J., Moe T. A., & Dorn, R. (2001). Carbon dioxide sequestering using microalgal systems. Pittsburgh: US Department of Energy.

Sydney, E. B., Sturm, W. & Larroche, C., (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101, 5892 – 5896.

Terry, K. L. & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7(10), 474 – 487.

United States Environmental Protection Agency. (2014). Climate Change Indicators in the United States: Global Greenhouse Gas Emissions. Retrieved July 11, 2015, from www.epa.gov/climatechange/indicators

Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707 – 718.

Wang, L. K., Pereira, N. C. , Hung, Y. T. & Shammas, N. K. (2009). Handbook of Environmental Engineering Volume 8: Biological Treatment Processes, New York : Humana Press.

Wu, H. Y., Zou, D., & GAo, K. S. (2008). Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro- algae. Science in China Series C: Life Sciences, 51, 1144–1150.

Yanagi, M., Watanabe, Y. & Saiki, H. (2000). CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Conversion and Management, 36, 713–716.

Yokogawa Electric Corporation. (2015). Float Holders Significantly Reduce Dissolved Oxygen Sensor Maintenance Workload (at Oxidation Ditch Type Sewage Treatment Plants). Retrieved August 9, 2015, from http://goo.gl/jszc06

Zeiler, K. G., Heacox, D. A., Toon, S. T., Kadam, K. L. & Brown, L. M. (1995). The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fi red power plant fl ue gas. Energy Conversion and Management, 36, 707–712.

Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 15(6), 3252 - 3260.

Downloads

Additional Files

เผยแพร่แล้ว

2015-12-31

How to Cite

ชิษณุพงศ์ ประทุม C. P. (2015). ความเป็นไปได้ในการลดก๊าซคาร์บอนไดออกไซด์ด้วยระบบบำบัดน้ำเสียแบบชีวภาพจากโรงงานอุตสาหกรรม. วารสารการจัดการสิ่งแวดล้อม, 11(2), 106–133. https://doi.org/10.14456/jem.2015.14

ฉบับ

บท

บทความปริทัศน์ Review