Forensic DNA Phenotyping for Prediction of Human Appearance from Crime Scene Evidences
Main Article Content
Abstract
Forensic DNA Phenotyping (FDP) is a rapidly advancing technique utilizing DNA evidence from crime scene to predict an individual's externally visible characteristics, such as appearance, ancestry, and age. This information can be invaluable in identifying suspects in cases where there are no eyewitnesses or traditional DNA fingerprinting methods like Short tandem repeats (STRs) analysis are inconclusive. This review article provide a comprehensive analysis of recent trends and developments in FDP. FDP has made significant strides in predicting physical characteristics from DNA. Researchers can now reliably predict eye, hair, and skin color, as well as other traits like eyebrow color, freckles, male pattern baldness, and tall stature. Additionally, DNA-based ancestry prediction has extended from identifying broad continental ancestry to pinpointing sub-continental origins and even classifying individuals with mixed ancestry. Current DNA technology enables Massively Parallel Sequencing (MPS), a technique that can analyze hundreds of DNA markers simultaneously, making FDP faster and more efficient. However, continuous development is still necessary to enhance the accuracy of FDP predictions, ensuring that they meet the needs of law enforcement agencies.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ โรงเรียนนายร้อยตำรวจ ถิอว่าเป็นข้อคิดเห็นและความรั้บผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วยหรือรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ถือว่าเป็นลิขสิทธิ์ของวารสาร วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจาก วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ก่อนเท่านั้น
References
Brancato, D., Coniglio, E., Bruno, F., Agostini, V., Saccone, S., & Federico, C. (2023). Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes, 14(8), 1604. https://www.mdpi.com/2073-4425/14/8/1604
Butler, J. M. (2012). Chapter 12 - Single Nucleotide Polymorphisms and Applications. In J. M. Butler (Ed.), Advanced Topics in Forensic DNA Typing: Methodology (pp. 347-369). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374513-2.00012-9
Butler, J. M. (2023). Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg, 6, 100311. https://doi.org/10.1016/j.fsisyn.2022.100311
Chaitanya, L., Breslin, K., Zuñiga, S., Wirken, L., Pośpiech, E., Kukla-Bartoszek, M., . . . Walsh, S. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics, 35, 123-135. https://doi.org/https://doi.org/10.1016/j.fsigen.2018.04.004
Chen, Y., Hysi, P., Maj, C., Heilmann-Heimbach, S., Spector, T. D., Liu, F., & Kayser, M. (2023). Genetic prediction of male pattern baldness based on large independent datasets. European Journal of Human Genetics, 31(3), 321-328. https://doi.org/10.1038/s41431-022-01201-y
Chooluck, S., & Jankhangram, W. (2021). DNA analysis in forensic science. KKU Science Journal, 49(4), 310-323.
Claes, P., Hill, H., & Shriver, M. D. (2014). Toward DNA-based facial composites: Preliminary results and validation. Forensic Science International: Genetics, 13, 208-216. https://doi.org/https://doi.org/10.1016/j.fsigen.2014.08.008
Deymenci, E., Sarı O, I., Filoglu, G., Polat, E., & Bulbul, O. (2024). Eye and hair color prediction of human DNA recovered from Lucilia sericata larvae. International Journal of Legal Medicine, 138(2), 627-637. https://doi.org/10.1007/s00414-023-03112-z
Dumache, R., Ciocan, V., Muresan, C., & Enache, A. (2016). Molecular DNA Analysis in Forensic Identification. Clin Lab, 62(1-2), 245-248. https://doi.org/10.7754/clin.lab.2015.150414
Haddrill, P. R. (2021). Developments in forensic DNA analysis. Emerg Top Life Sci, 5(3), 381-393. https://doi.org/10.1042/etls20200304
Hagenaars, S. P., Hill, W. D., Harris, S. E., Ritchie, S. J., Davies, G., Liewald, D. C., . . . Marioni, R. E. (2017). Genetic prediction of male pattern baldness. PLOS Genetics, 13(2), e1006594. https://doi.org/10.1371/journal.pgen.1006594
Hernando, B., Ibañez, M. V., Deserio-Cuesta, J. A., Soria-Navarro, R., Vilar-Sastre, I., & Martinez-Cadenas, C. (2018). Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples. Forensic Science International: Genetics, 33, 38-47. https://doi.org/https://doi.org/10.1016/j.fsigen.2017.11.013
Hunter, P. (2021). Cold cases and ancient trade routes: DNA phenotyping and isotope analysis extend forensic science into new domains. EMBO Rep, 22(12), e54188. https://doi.org/10.15252/embr.202154188
Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985a). Hypervariable 'minisatellite' regions in human DNA. Nature, 314(6006), 67-73. https://doi.org/10.1038/314067a0
Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985b). Individual-specific 'fingerprints' of human DNA. Nature, 316(6023), 76-79. https://doi.org/10.1038/316076a0
Kayser, M., Branicki, W., Parson, W., & Phillips, C. (2023). Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet, 65, 102870. https://doi.org/10.1016/j.fsigen.2023.102870
Kim, B., Kim, D. S., Shin, J.-G., Leem, S., Cho, M., Kim, H., . . . Won, H.-H. (2024). Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nature Communications, 15(1), 4874. https://doi.org/10.1038/s41467-024-49031-4
Kukla-Bartoszek, M., Pośpiech, E., Woźniak, A., Boroń, M., Karłowska-Pik, J., Teisseyre, P., . . . Branicki, W. (2019). DNA-based predictive models for the presence of freckles. Forensic Science International: Genetics, 42, 252-259. https://doi.org/https://doi.org/10.1016/j.fsigen.2019.07.012
Lello, L., Avery, S. G., Tellier, L., Vazquez, A. I., de los Campos, G., & Hsu, S. D. H. (2018). Accurate Genomic Prediction of Human Height. Genetics, 210(2), 477-497. https://doi.org/10.1534/genetics.118.301267
Lima, L., Galiciolli, M., Pereira, M., Felisbino, K., De Souza, C., Oliveira, C., & Guiloski, I. (2022). Modification by genetic polymorphism of lead-induced IQ alteration: a systematic review. Environmental Science and Pollution Research, 29. https://doi.org/10.1007/s11356-022-19981-7
Liu, F., Hamer, M. A., Heilmann, S., Herold, C., Moebus, S., Hofman, A., . . . Kayser, M. (2016). Prediction of male-pattern baldness from genotypes. European Journal of Human Genetics, 24(6), 895-902. https://doi.org/10.1038/ejhg.2015.220
Marano, L., & Fridman, C. (2019). DNA phenotyping: current application in forensic science. Research and Reports in Forensic Medical Science, Volume 9, 1-8. https://doi.org/10.2147/RRFMS.S164090
Marcińska, M., Pośpiech, E., Abidi, S., Andersen, J. D., van den Berge, M., Carracedo, Á., . . . Branicki, W. (2015). Evaluation of DNA Variants Associated with Androgenetic Alopecia and Their Potential to Predict Male Pattern Baldness. PLOS ONE, 10(5), e0127852. https://doi.org/10.1371/journal.pone.0127852
Murder of Shaquana Marie Caldwell. Parabon NanoLab. Retrieved 13 May from https://snapshot.parabon-nanolabs.com/snapshot-case-summary--anne-arundel-county-md--shaquana-caldwell-murder.html
Paparazzo, E., Gozalishvili, A., Lagani, V., Geracitano, S., Bauleo, A., Falcone, E., . . . Montesanto, A. (2022). A new approach to broaden the range of eye colour identifiable by IrisPlex in DNA phenotyping. Scientific Reports, 12(1), 12803. https://doi.org/10.1038/s41598-022-17208-w
Peng, F., Xiong, Z., Zhu, G., Hysi, P. G., Eller, R. J., Wu, S., . . . Liu, F. (2023). GWAs Identify DNA Variants Influencing Eyebrow Thickness Variation in Europeans and Across Continental Populations. Journal of Investigative Dermatology, 143(7), 1317-1322.e1311. https://doi.org/10.1016/j.jid.2022.11.026
Peng, F., Zhu, G., Hysi, P. G., Eller, R. J., Chen, Y., Li, Y., . . . Kayser, M. (2019). Genome-Wide Association Studies Identify Multiple Genetic Loci Influencing Eyebrow Color Variation in Europeans. Journal of Investigative Dermatology, 139(7), 1601-1605. https://doi.org/https://doi.org/10.1016/j.jid.2018.12.029
Schneider, P. M., Prainsack, B., & Kayser, M. (2019). The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Dtsch Arztebl Int, 51-52(51-52), 873-880. https://doi.org/10.3238/arztebl.2019.0873
Valle-Silva, G. d., Souza, F. D. N. d., Marcorin, L., Pereira, A. L. E., Carratto, T. M. T., Debortoli, G., . . . Mendes-Junior, C. T. (2019). Applicability of the SNPforID 52-plex panel for human identification and ancestry evaluation in a Brazilian population sample by next-generation sequencing. Forensic Science International: Genetics, 40, 201-209. https://doi.org/https://doi.org/10.1016/j.fsigen.2019.03.003
Walsh, S., Chaitanya, L., Breslin, K., Muralidharan, C., Bronikowska, A., Pospiech, E., . . . Kayser, M. (2017). Global skin colour prediction from DNA. Human Genetics, 136(7), 847-863. https://doi.org/10.1007/s00439-017-1808-5
Walsh, S., Chaitanya, L., Clarisse, L., Wirken, L., Draus-Barini, J., Kovatsi, L., . . . Kayser, M. (2014). Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Science International: Genetics, 9, 150-161. https://doi.org/https://doi.org/10.1016/j.fsigen.2013.12.006
Walsh, S., Lindenbergh, A., Zuniga, S. B., Sijen, T., de Knijff, P., Kayser, M., & Ballantyne, K. N. (2011). Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Sci Int Genet, 5(5), 464-471. https://doi.org/10.1016/j.fsigen.2010.09.008
Walsh, S., Liu, F., Ballantyne, K. N., van Oven, M., Lao, O., & Kayser, M. (2011). IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet, 5(3), 170-180. https://doi.org/10.1016/j.fsigen.2010.02.004
Walsh, S., Liu, F., Wollstein, A., Kovatsi, L., Ralf, A., Kosiniak-Kamysz, A., . . . Kayser, M. (2013). The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Science International: Genetics, 7(1), 98-115. https://doi.org/https://doi.org/10.1016/j.fsigen.2012.07.005
Yengo, L., Vedantam, S., Marouli, E., Sidorenko, J., Bartell, E., Sakaue, S., . . . Bisgaard, H. (2022). A saturated map of common genetic variants associated with human height. Nature, 610(7933), 704-712. https://doi.org/10.1038/s41586-022-05275-y