Patrol-Routing Management System for Prevention and Suppression Patrol in Eastern Economic Corridor
Main Article Content
Abstract
This study aims to examine the current status of patrol-routing coordination and management. It analyzes and proposes management strategies for patrol routes and administrative systems. The focus is on developing and improving the efficiency of the Patrol-Routing Management System (PRMS) to enhance crime prevention and suppression efforts within Thailand's Eastern Economic Corridor (EEC). In response to the increasing demand for crime prevention, the Royal Thai Police have prioritized effectively managing patrol routes to mitigate criminal activities and improve response times. Through an in-depth analysis of patrol routes at key police stations in the EEC, specifically in Chonburi (Pattaya City Police Station), Rayong (Pae Police Station), and Chachoengsao (Mueang Chachoengsao Police Station). This study identifies improving patrol route planning, patrol time efficiency, and patrol management systems. The research applies the primary concept of the Traveling Salesman Problem (TSP) and Transport Management Systems (TMS) to develop an optimized patrol management system that enhances both patrol route and time efficiency while also increasing police visibility in high-crime areas. The findings indicate that effective patrol route planning contributes significantly to time management, resource allocation, and crime deterrence. The integration of advanced technologies facilitates dynamic and flexible routes, enabling law enforcement officers to access target areas more efficiently and respond promptly to emerging situations. Adapting patrol strategies to the specific characteristics of each area, supported by crime data, further improves crime control and resource utilization. Improved patrol routes not only support proactive crime prevention but also foster public confidence in law enforcement, contributing to sustainable community safety.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ โรงเรียนนายร้อยตำรวจ ถิอว่าเป็นข้อคิดเห็นและความรั้บผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วยหรือรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ถือว่าเป็นลิขสิทธิ์ของวารสาร วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจาก วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ก่อนเท่านั้น
References
Atsawasuthirakul, D. (2015). Automatic itinerary planning: A methodology for automatic itinerary planning. Journal of Information Technology, 11(1), 12–21.
Feng, H. M. & Liao, K. L. (2014). Hybrid evolutionary fuzzy learning scheme in the applications of traveling salesman problem. Information Sciences, 270, 204–225.
Godinhoa, M. T., Gouveia, L. & Pesneau, P. (2014). Natural and extended formulations for the Time-Dependent Traveling Salesman Problem. Discrete Applied Mathematics, 164, 138–153.
Greenberg, S.W., W.M. Rohe, and J.R. Williams. Informal Citizen Action and Crime Prevention at the Neighborhood Level: Synthesis and Assessment of the Research. (Washington D.C., U.S. National Institute of Justice, 1985).
Groba, C., Sartal, A. & Vázquez, X. H. (2015). Solving the dynamic traveling salesman problem using agenetic algorithm with trajectory prediction: An application to fish aggregating devices. Computers & OperationsResearch, 56, 22–32.
Hougardy, S. & Wilde, M. (2015). On the nearest neighbor rule for the metric traveling salesman problem. Discrete Applied Mathematics, 195, 101–103.
International Organization for Migration (IOM). (2024). Migration Governance Indicators 2023 – Thailand. IOM, Geneva.
Jawaid, S. T. & Smith, S. L. (2015). Informative path planning as a maximum traveling salesman problem with submodular rewards. Discrete Applied Mathematics, 186, 112–127.
Kelling, George L., “Police and Communities: The Quiet Revolution,” Perspectives on Policing (February 1988)
Khiewsopa, P., & Chimkhruawan, K. (2014). Travel route planning problem using genetic algorithm: A case study of a parcel delivery company in Khon Kaen Province. Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University. (in Thai)
Kopytov, E., Gromov, D., & Abramov, S. (2023). Improving Transportation Management Systems (TMSs) Based on Digital Twins. Applied Sciences, 14(4), 1330.
Muangpan, T., Wonginta, T., & Muangpan, T. (2016). The conceptual framework of motorcycle patrol routes: The case study of Samed Police Station. Journal of Transportation and Logistics, 9(1). (in Thai)
Murray, C. C. & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C, 54, 86–109.
Phakdinarinat, S., & Team. (n.d.). Guidelines for modern policing: Modern policing [community policing in CSD]. Green Apple Co., Ltd. (in Thai)
Rosenbaum, Dennis P., Eusevio Hernandez, and Sylvester Daughtry, Jr. “Crime Prevention, Fear Reduction, and the Community.” Local Government Police Management, ed. William A. Geller. (Washington, D.C., International City Management Association, 1991): p.96.)
Royal Thai Police. (2024). Administrative guidelines of the Police Commissioner-General for fiscal year 2024. (in Thai)
Royal Thai Police. (2023). Royal Thai Police 20-year strategy (2018–2037). (in Thai)
Royal Thai Police. (2023). Royal Thai Police five-year operational plan (2023–2027). (in Thai)
Wang. Y. (2014). The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem. Computers & Industrial Engineering, 70, 124–133.