The Study of Fatal Road Traffic Accidents and Black Spot Identification: A Study Based on Data in Department of Forensic Medicine, Chulalongkorn University
Main Article Content
Abstract
The purpose of this study was to analyze the density of fatal road traffic accidents and examine the factors contributing to these accidents in the responsible area of the forensic medicine department, Chulalongkorn University during 2017-2021. The density of fatal road traffic accidents was determined using Kernel Density Estimation (KDE) in a geographic information system (GIS). According to the results of this study, there were 281 traffic fatalities at the scene of an accident in total, of which 80.8% were male and ranged in age from 21 to 39 years old (53%). The traffic accidents were most likely to occur at night (64.1%). Deaths from motorcycle accidents were the most common type of accident (81.9%) and occurred more frequently on straight roads (58.7%). The most common site of injury was the head injury (52.3%). The recent study found that some traffic fatalities were related to blood alcohol levels exceeding 50 mg% (44.5%). It had been determined that there were six black spots in these areas: Khlong Tan crossing bridge, Wongwian Yai BTS Skytrain area on Thonburi Road, Sunthonkosa Road, Sukhumvit 40 area on Rama IV Road, Bang Chak Petroleum Terminal area on Thang Rodfai Sai Kao road, and Bhumibol I bridge. Several factors may contribute to a traffic accident, such as drunken riders, inadequate lighting, and physical features of the road.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ โรงเรียนนายร้อยตำรวจ ถิอว่าเป็นข้อคิดเห็นและความรั้บผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วยหรือรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ถือว่าเป็นลิขสิทธิ์ของวารสาร วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจาก วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ก่อนเท่านั้น
References
Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention, 41(3), 359–364.
Deacon, J. A., Zegeer, C. V., & Deen, R. C. (1975). IDENTIFICATION OF HAZARDOUS RURAL HIGHWAY LOCATIONS. Transportation Research Record, 543(543), 16-33.
Elvik, R. (2007). State-of-the-Art Approaches to Road Accident Black Spot Management and Safety Analysis of Road Networks. Institute of Transport Economics. Oslo.
Injury Data Collaboration Center Division of Injury Prevention. (2022). Situation of fatal road traffic accident in Thailand. Retrieved July 9, 2022. From https://dip.ddc.moph. go.th/new/%E0%B8%9A%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%B2%E0%B8%A3/3base_status_new. (In Thai).
Kamontum, S. (2003). Basic Geographic information system. Retrieved July 9, 2022. From https://www.dit.go.th/FILE/CONTENT_FILE/255909151616187298348.pdf. (In Thai).
Le, K. G., Liu, P., & Lin, L. T. (2019). Determining the road traffic accident hotspots using GIS- based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-Spatial Information Science, 23(2), 153–164.
Loo, B. P., & Yao, S. (2013). The identification of traffic crash hot zones under the link- attribute and event-based approaches in a network-constrained environment. Computers, Environment and Urban Systems, 41, 249–261.
Ocharoen, N. (2017). Road traffic accident and Thai economy. Retrieved July 9, 2022. From https://tdri.or.th/2017/08/econ_traffic_accidents/. (In Thai).
O’Sullivan, D., & Wong, D. W. S. (2007). A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis, 39(2), 147–168.
Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.
Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, 27(3), 832–837.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Siripanich, S., Dumnakeaw, K., & Kumwongsa, A. (2009). Epidemiology of Injuries and Deaths Caused by Road Traffic Accidents in Thailand. Journal of Health Systems Research, 3(4), 598–605. (In Thai).
Thakali, L., Kwon, T. J., & Fu, L. (2015). Identification of crash hotspots using kernel density estimation and kriging methods: a comparison. Journal of Modern Transportation, 23(2), 93–106.
Thomas, I. (1996). Spatial data aggregation: Exploratory analysis of road accidents. Accident Analysis & Prevention, 28(2), 251–264.
World Health Organization. (2018). Global Status Report on Road Safety 2018. Retrieved July 9, 2022. From https://www.who.int/publications/i/item/9789241565684.
World Health Organization. (2022). Road traffic injuries. Retrieved July 9, 2022. From https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
Yu, H., Liu, P., Chen, J., & Wang, H. (2014). Comparative analysis of the spatial analysis methods for hotspot identification. Accident Analysis & Prevention, 66, 80–88.