Application of Adsorbents in Sample Preparation for Analysis of Gasoline by The Headspace-gas Chromatography-mass Spectrometry Technique
Main Article Content
Abstract
Forensic investigation of flammable liquids from fire evidence using the gas chromatography-mass spectrometry (GC-MS) with sample extraction from fire evidence was studied, because the sample of fire evidence is large and contaminated with water. However, this method causes damage of the evidence and loss of gasoline components. The aim of this research was to study the application of adsorbents for direct analysis of gasoline by headspace gas chromatography-mass spectrometry (HS-GC-MS) without the extraction. This research studied three types of absorbents, including carbon strip, activated carbon and bamboo charcoal, subjected to absorb gasoline vapor. Then, the absorbents were analyzed by using the HS-GC-MS without sample extraction compared with GC-MS with sample and absorbent extraction. The results showed that the efficiency of carbon strip for analysis of gasoline by the HS-GC-MS was significantly higher than that of activated carbon and bamboo charcoal (p< 0.05) under optimal conditions for gasoline absorption at 60 °C and 8 hours. The means of percent recovery for direct analysis of gasoline from carbon strip, activated carbon and bamboo charcoal by using the HS-GC-MS were 85.22, 68.79 and 38.42, respectively, whereas the means of percent recovery for analysis of gasoline extraction from carbon strip, activated carbon and bamboo charcoal by using the GC-MS were 79.94, 56.34 and 40.29, respectively. After that, carbon strip absorbent was then tested for its performance for gasoline investigation of mock-up fire evidence, including cloth, plywood, papers and soil. The gasoline investigation of mock-up fire evidence showed that analysis of gasoline directly from carbon strip absorbent by using the HS-GC-MS had significantly higher percent recovery than analysis of gasoline extracted from carbon strip absorbent and work-up fire evidence by using the GC-MS (p<0.05). Altogether, it can be concluded that carbon strip is the best studied absorbent for forensic investigation by using the HS-GC-MS without sample extraction.
Article Details
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ โรงเรียนนายร้อยตำรวจ ถิอว่าเป็นข้อคิดเห็นและความรั้บผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วยหรือรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ใน วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ถือว่าเป็นลิขสิทธิ์ของวารสาร วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจาก วารสารวิชาการอาชญาวิทยาและนิติวิทยาศาสตร์ ก่อนเท่านั้น
References
Ahmedna, M., Marshallb, W.E. and Raoa, R.M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology. 71, 113-123.
Asada, T., Ishihara, S., Yamane, T., Toba, A., Yamada, A. and Oikawa, K. (2002). Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. Journal of Health Science. 48 (6), 473-479.
ASTM E1618-11. (2011). Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. ASTM International, West Conshohocken, PA.
ASTM. E1412-12. (2012). Standard Practice for Separation of Ignitable Liquid Residues From Fire Debris Samples by Passive Headspace Concentration with Activated Charcoal. ASTM International, West Conshohocken, PA.
ASTM. D5769-20. (2020). Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry. ASTM International, West Conshohocken, PA.
Eser, S. (2020). Introduction to Petroleum Refining and Crude Oil Composition. Retrieved January 9, 2021, from https://www.e-education.psu.edu/fsc432/node/3
Ferreiro-González, M., Ayuso, J., Álvarez, J.A., Palma, M. and Barroso, C.G. (2015). Application of HS–MS for detection of ignitable liquids from fire debris. Talanta. 142,150-156.
Kocharit, A. (2002). Analysis of volatile organic compounds (VOCs) in the air by Headspace Gas Chromatography (HS-GC). Master of Science (Analytical Chemistry) Thesis Prince of Songkhla University, Songkhla province. (In Thai)
Menakanit T. (2019). Criminal Law Code: Reference Issue. 42th ed. Bangkok: Winyuchon (in Thai).
Niels, K., Jorgensen, NK. and Cohr, KH. (1981). n-Hexane and its toxicologic effects. Scand J work environ health. 7, 157-168.
Raruenrom J. (2008). Application of activated carbon to the identification of flammable liquids. Master of Science (Forensic Science) Thesis Silpakorn University, Nakhon Pathom province (Thesis) (In Thai).
Thambandit, J. (2011). Efficiency Testing of Bamboo Charcoal Using as an Adsorbent for Flammable Liquids. Master of Science (Forensic Science) Thesis Chiang Mai University, Chiang Mai. (In Thai).
Watarai, S. and Tana. (2005). Eliminating the carriage of Sallmonella enteriaca serova enteritidisin domestic fowls by feeding activated charcoal bark containing wood vinegar liquid (Nekka-rich). Pourlty Science. 84, 515-521.