Development of a Learning Media Kit on Sound Wave and Light using Smartphone sensors as Measurement Tools according to the Engineering Design Process for STEM Education Learning Management
Main Article Content
Abstract
This research aimed at the following objectives: (1) to design and develop a learning media set on sound waves and light using a smartphone sensor as a measuring tool based on the engineering design process for STEM education learning management; (2) to evaluate the efficiency of the learning media set on sound waves and light using a smartphone sensor as a measuring tool based on the engineering design process for STEM education learning management; and (3) to trial and evaluate the use of the learning media set on sound waves and light using a smartphone sensor as a measuring tool based on the engineering design process for STEM education learning management. The population and samples used in the trial use of the learning media set were 1) 4 physics teachers from School A and 4 from School B; 2) 12 student teachers; and 3) 50 high school students from School A and 45 from School B. The research instruments consisted of the learning media set on sound waves and light using a smartphone sensor as a measuring tool based on the engineering design process for STEM education learning management, the teacher’s manual and learning activity record sheets for the learning media set, the learning media set efficiency evaluation form, and the learning achievement test. The statistics used in the research were mean, standard deviation, t-test, and the normalized gain.
The research found that: 1) Learning media set on sound waves and light using Smartphone sensors as measuring tools according to the engineering design process for organizing learning according to STEM education guidelines which developed in this research can be used to measure various variables and parameters that need to be studied with accuracy and precision. 2) The results of evaluating the effectiveness of the learning media set on sound waves and light using Smartphone sensors as measurement tools according to the engineering design process for organizing learning according to the STEM education approach, found that, it was appropriate at a high level, consisting of essential content/learning content, and methods for measuring and evaluating learning outcomes with target groups and is most appropriate, consisting of learning objectives Learning activities with competency-based learning. The Learning equipment set and manual and learning activities. The total average evaluation score was 4.55, and the standard deviation was 0.512, which is in the highest quality criteria. 3) Learning achievement of organizing learning with learning media sets on sound waves and light. For learning management according to the STEM approach, after class was significantly higher than before class at the .05 level. The normalized gain for the physics content teachers at School A had higher (<g> = 0.73, <g> = 0.81) than physics content teacher of School B (<g> = 0.67, <g> = 0.79). Student teachers had normalized gain on the light topic (<g> = 0.68) than the sound wave topic (<g> = 0.67), and students of School A had higher normalized gain (<g> = 0.68, <g> = 0.66) than students of School B (<g> = 0.61, <g> = 0.59), respectively.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ในกรณีที่กองบรรณาธิการ หรือผู้เชี่ยวชาญ ซึ่งได้รับเชิญให้เป็นผู้ตรวจบทความวิจัย หรือ บทความทางวิชาการมีความเห็นว่าควรแก้ไขความบกพร่อง ทางกองบรรณาธิการจะส่งต้นฉบับให้ ผู้เขียนพิจารณาจัดการแก้ไขให้เหมาะสมก่อนที่จะลงพิมพ์ ทั้งนี้ กองบรรณาธิการจะยึดถือความคิด เห็นของผู้เชี่ยวชาญเป็นเกณฑ์
References
Castro-Palacio, J.C., Velázquez-Abad, L., Giménez, M.H., & Monsoriu. J.A. (2013). “Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations”, American Journal of Physics. 81(6), 472 – 475.
Çoban, A., & Erol, M. (2019). Teaching and determination of kinetic friction coefficient using smartphones. Physics Education, 54, 025019.
González, M.Á., & González, M.Á. (2016). “Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods”, European Journal of Physics. 37, 045701.
Grasse, E.K., Torcasio, M.H., & Smith, A.W. (2016). “Teaching UV−Vis spectroscopy with a 3D-printable smartphone spectrophotometer”, Journal of Chemical Education. 93, 146−151.
Hirth, M., Gröber, S., Kuhn, J., & Müller, A. (2016). “Harmonic resonances in metal rods – easy experimentation with a smartphone and tablet PC”. The Physics Teacher. 54, 163-167.
Hirth, M., Kuhn, J., & Müller, A. (2015). “Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology”, The Physics Teacher. 53(2), 120–121.
Hochberg, K., Kuhn, J., & Muller, A. (2018). Using smartphones as experimental tools–effects on interest, curiosity, and learning in physics education. Journal of Science Education and Technology, 27(5), 385–403.
Hochberg, K., Becker, S., Louis, M., Klein, P., & Kuhn, J. (2020). Using smartphones as experimental tools–a follow–up: Cognitive effects by video analysis and reduction of cognitive load by multiple representations. Journal of Science Education and Technology, 29(2), 303–317.
Kaps, A., & Stallmach, F. (2022). Development and didactic analysis of smartphone–based experimental exercises for the smart physics lab. Physics Education, 57, 045038.
Kaps, A., Splith. T., & Stallmach, F. (2021). Imprementation of smartphone–based experimental exercises for physics courses at universities. Physics Education, 56, 035004.
Monteiro, M., & Marti, A.C., (2022). Resource Letter MDS–1: Mobile devices and sensors for physics teaching. American Journal of Physics, 90(5), 328–343.
Klein, P., Hirth, M., Gröber, S., Kuhn, J., & Müller, A. (2014). “Classical experiments revisited: smartphones and tablet PCs as experimental tools in acoustics and optics”, Physics Education. 49(4), 412–418.
Kuhn, J., & Vogt, P. (2013). “Smartphones as experimental tools: different methods to determine the gravitational acceleration in classroom physics by using everyday devices”, European Journal of Physics Education. 4(1), 16–27.
Kuhn, J., Vogt, P., & Hirth, M. (2014). “Analyzing the acoustic beat with mobile devices”, The Physics Teacher. 52, 248 – 249.
Kuntzleman, T.S. & Jacobson, E.C. (2016). “Teaching Beer’s law and absorption spectrophotometry with a smart phone: A substantially simplified protocol”, Journal of Chemical Education. 93, 1249−1252.
Putra, P.D.A., Sulaeman, N.F., and Wahyuni, S.S. (2023). “Exploring students’ critical thinking skills using the engineering design process in a physics classroom”, Asia–Pacific Education Research. 32(1), 141-149.
Sans, J.A., Manjón, F.J., Cuenca-Gotor, V., Giménez-Valentín, M.H., Salinas, I., Barreiro, J.J., … Gomez-Tejedor, J. A. (2015). “Smartphone: a new device for teaching Physics”, 1st International Conference on Higher Education Advances, HEAd’15, 415-422.
Shanta, S. and Wells, J.G. (2022). “T/E design based learning: Assessing student critical thinking and problem solving abilities”, International Journal of Technology and Design Education. 32, 267-285.
Tseng, K.-H., Chang, C.-C., Lou, S.-J., and Chen, W.-P. (2013). “Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment”, International Journal of Technology Design Education. 23, 87-102.
Vasconcelos, L. and Kim, C. (2022). “Preservice science teachers coding science simulations: epistemological understanding, coding skills, and lesson design”, Educational technology research and development. 70, 1517–1549
Yin, Y., Khaleghi, S., Hadad, R., and Zhai, X. (2022). “Developing effective and accessible activities to improve and assess computational thinking and engineering learning”, Education Technology Research and Development. 70, 951-988.
พลศักดิ์ แสงพรมศรี ประสาท เนืองเฉลิม และ ปิยะเนตร จันทร์ถิระติกุล. (2558). “การเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ทักษะกระบวนการทางวิทยาศาสตร์ขั้นสูงและเจตคติต่อการเรียนเคมีของนักเรียนชั้นมัธยมศึกษาปีที่ 5 ที่ได้รับการจัดการเรียนรู้สะเต็มศึกษากับแบบปกติ”, วารสารศึกษาศาสตร์ มหาวิทยาลัยมหาสารคาม. 9(ฉบับพิเศษ), 401 – 418.
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี. (2557). ความรู้เบื้องต้นสะเต็ม (พิมพ์ครั้งที่ 1). กรุงเทพฯ: สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ.
สุพรรณี ชาญประเสริฐ. (2557). “สะเต็มศึกษากับการจัดการเรียนรู้ในศตวรรษที่ 21”, นิตยสาร สสวท. 42(186), 3 – 5.