Confirmatory of Composite Analysis

Main Article Content

CHANTA JHANTASANA

Abstract

Abstract


The advantage of the variance-based structural equation model is that simple convergence, limited sample size and non-normal distribution data are especially in comparison to the covariance-based structural equation model, such as the confirmatory factor analysis. In addition, the variance-based approach was developed in 2015 using factor variable influence less bias and the scholar proposed a confirmatory composite analysis. As a result, variance-based can operate both confirmatories, while covariance-based only performs a confirmatory factor analysis. This study is investigating the results of confirmatory composite analysis to use a variance-based or partial least square model of structural equation using Jhantasana data (2020). The outcome demonstrates flexible composite confirmation analysis. However, the significance of this method is multicollinearity, including model-fit criteria, which by solving it can increase the quality of a model. Confirmatory composite analysis can focus more on many fields as many organizations create a composite index for many indicators than a latent variable used only for behavioral studies.

Downloads

Download data is not yet available.

Article Details

How to Cite
JHANTASANA, C. (2021). Confirmatory of Composite Analysis. Journal of Accountancy and Management, 14(1). retrieved from https://so02.tci-thaijo.org/index.php/mbs/article/view/251692
Section
Research Articles

References

ฉันธะ จันทะเสนา. (2563). Methods of reporting research-results of the second-order construct of pls-sem. Chulalongkorn Business Review, 42(165), 39 - 67.

Aaker, D.A. (1991). Managing Brand Equity. New York, NY : The Free Press.

Antonakis, J., Bendahan, S., Jacquart, P., & Lalive, R. (2010). On making causal claims: A review and recommendations. The Leadership Quarterly, 21(6), 1086-1120.

Becker, J. M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Planning, 45(5-6), 359-394.

Benítez-Ávila, C., Hartmann, A., Dewulf, G., & Henseler, J. (2018). Interplay of relational and contractual governance in public-private partnerships: The mediating role of relational norms, trust and partners' contribution. International journal of project management, 36(3), 429-443.

Braojos, J., Benitez, J., & Llorens, J. (2019). How do social commerce-IT capabilities influence firm performance? Theory and empirical evidence. Information & Management, 56(2), 155-171.

Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), 265.

Bollen, K. A., & Diamantopoulos, A. (2015). In defense of causal-formative indicators: A minority report. Psychological Methods, 22(3), 581-596.

Cavicchia, C., & Vichi, M. (2020). Statistical model based composite indicators for tracking coherent policy conclusions. Social Indicators Research, 156, 449-479.

Cegarra-Navarro, J. G., Ruiz, F. J. A., Martínez-Caro, E., & Garcia-Perez, A. (2019). Turning heterogeneity into improved research outputs in international R&D teams. Journal of Business Research, 128, 770-778.

Cohen, J. (1988). Set correlation and contingency tables. Applied Psychological Measurement, 12(4), 425-434.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281-302.

Dijkstra,T. K. (2013). A note on how to make PLS consistent. Working Paper. Retrieved on August 12, 2020, from http://www.rug.nl/staff/t.k.dijkstra/how-to-make-pls-consist.

Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10-23.

Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 1-20.

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155-174.

Felipe, C. M., Roldán, J. L., & Leal-Rodríguez, A. L. (2016). An explanatory and predictive model for organizational agility. Journal of Business Research, 69(10), 4624-4631.

Foltean, F. S., Trif, S. M., & Tuleu, D. L. (2019). Customer relationship management capabilities and social media technology use: Consequences on firm performance. Journal of Business Research, 104, 563-575.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.

Hair Jr, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109, 101-110.

Henseler, J., & Schuberth, F. (2020). Using confirmatory composite analysis to assess emergent variables in business research. Journal of Business Research, 120, 147-156.

Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D., Hair, J. F., Hult, T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Ronkko and Evermann (2013). Organizational Research Methods, 17(2), 182-209.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20

Henseler, J. (2017a). ADANCO 2.0. 1. In 9th International Conference on PLS and Related Methods, PLS.

Henseler, J. (2017b). Bridging design and behavioral research with variance-based structural equation modeling. Journal of Advertising, 46(1), 178-192.

Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.

Hubona, G. S., Schuberth, F., & Henseler, J. (2021). A clarification of confirmatory composite analysis (CCA). International Journal of Information Management, 61, 1-8.

Hult, G. T. M., Hair Jr, J. F., Proksch, D., Sarstedt, M., Pinkwart, A., & Ringle, C. M. (2018). Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing, 26(3), 1-21.

Kettenring, J. R. (1971). Canonical analysis of several sets of variables, Biometrika, 58(3), 433–451.

Jhantasana, C. (2020). Methods of reporting research-results of the second-order construct of pls-sem. Chulalongkorn Business Review, 42(3), 39 - 67.

Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183-202.

Marcoulides, G. A., & Chin, W. W. (2013). You write, but others read: Common methodological misunderstandings in PLS and related methods. In New perspectives in Partial Least Squares and Related Methods (pp. 31-64). New York, NY : Springer.

Martelo-Landroguez, S., Navarro, J. G. C., & Cepeda-Carrión, G. (2019). Uncontrolled counter-knowledge: its effects on knowledge management corridors. Knowledge Management Research & Practice, 17(2), 203-212.

Menisera,M. (2007). Scoring ordinal variables for constructing composite indicators. Statistica, 63(3), 309-324.

Motamarri, S., Akter, S., & Yanamandram, V. (2020). Frontline employee empowerment: Scale development and validation using confirmatory composite analysis. International Journal of Information Management, 54, 102-177.

Nardo,M., Saisana, M., Saltelli, A., Tarantola, S., Hoffma, A. & Giovannini, E. (2005). Handbook on constructing composite indicators: Methodology and user guide, OECD Statistics Working Paper.

OECD (2006). Handbook on constructing composite indicators. Retrieved on August 20, 2020, from https://www.oecd.org/sdd/42495745.pdf

Rasoolimanesh, S. M., Md Noor, S., Schuberth, F., & Jaafar, M. (2019). Investigating the effects of tourist engagement on satisfaction and loyalty. The Service Industries Journal, 39(7-8), 559-574.

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly”. MIS Quarterly, 36(1), 3-14.

Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425-448.

Rönkkö, M., McIntosh, C. N., Antonakis, J., & Edwards, J. R. (2016). Partial least squares path modeling: Time for some serious second thoughts. Journal of Operations Management, 47, 9-27.

Rueda, L., Benitez, J., & Braojos, J. (2017). From traditional education technologies to student satisfaction in Management education: A theory of the role of social media applications. Information & Management, 54(8), 1059-1071.

Ruiz-Palomo D, Diéguez-Soto J, Duréndez A, Santos JAC. (2019). Family management and firm performance in family SMEs: The mediating roles of management control systems and technological innovation. Sustainability, 11(14), 1-22.

Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CB-SEM: Where the bias lies! Journal of Business Research, 69(10), 3998-4010.

Schuberth, F. (2020). Confirmatory composite analysis using partial least squares: Setting the record straight. Review of Managerial Science, 15, 1-35.

Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second-order constructs using PLS-PM: the case of composites of composites. Industrial Management & Data Systems.

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9, 1-14.

Schumacker., R. E., & Lomax, R.G. (2016). A beginner's Guide to Structural Equation Modeling: 4th Edition, New York, NY : Routledge.

Van Riel, A. C., Henseler, J., Kemény, I., & Sasovova, Z. (2017). Estimating hierarchical constructs using consistent partial least squares: The case of second-order composites of common factors. Industrial management & data systems, 117(3), 459-477.

Yiu, H. L., Ngai, E. W., & Lei, C. F. (2020). Impact of service‐dominant orientation on the innovation performance of technology firms: Roles of knowledge sharing and relationship learning. Decision Sciences, 51(3), 620-654.

Zhou, P., Ang, B. W., & Poh, K. L. (2007). A mathematical programming approach to constructing composite indicators. Ecological economics, 62(2), 291-297.