Personalization: Introduction, Applications, Concerns, and Recommendations

Main Article Content

Snitnuth Niyomsin
Chichcha Patharasophonvorakul
Kannikar Chakesaengrat
Ladawan Yomchinda
Roengrak Jampangoen

Abstract

 


Today, online businesses often offer personalized services to consumers. Personalization not only gives consumers better experience, but also helps increase businesses profitability. However, there are some drawbacks that come with it. This article aims to provide basic knowledge of web personalization and its impacts. There are four parts presented in the article as follows: 1)  basic knowledge of personalization, from consumer data collection to how data is used in various types of recommender systems; 2), give examples of how personalization is used – that is, in advertising, user engagement, and product recommendation; 3) discuss the impacts of personalization on consumers and society – consumer privacy concerns and a decrease in content diversity; and 4) recommendations to stakeholders – businesses, consumers, and government agencies.

Article Details

Section
Academic Article

References

กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2565). รายงานผลการสำรวจพฤติกรรมผู้ใช้อินเทอร์เน็ตใน

ประเทศไทย ปี 2565. สืบค้นจาก https://www.etda.or.th/getattachment/78750426-4a58-4c3685d3d1c11c3db1f3/IUB-65-Final.pdf.aspx

สำนักงานคณะกรรมการกฤษฏีกา. พระราชบัญญัติคุ้มครองข้อมูลส่วนบุคคล. 2562 (พฤษภาคม, 27)

Anand, S. S., & Mobasher, B. (2005). Intelligent Techniques for Web Personalization. Springer

Heidelberg, LNAI (169), DOI:10.1007/11577935_1

Bodó, B., Helberger, N., Eskens, S., & MöllerInterested, J. (2019). Interested in Diversity: The

role of user attitudes, algorithmic feedback loops, and policy in news personalization.

Digital Journalism, 7(2), 206-229, DOI: 10.1080/21670811.2018.1521292

Bol, N., Dienlin, T., Kruikemeier, S., Sax, M., Boerman, C. S., Strycharz, J. Helberger, N., &

Vreese, H. C. (2018). Understanding the Effects of Personalization as a Privacy Calculus:

Analyzing Self-Disclosure Across Health, News, and Commerce Contexts. Journal of

Computer-Mediated Communication, 23, 370–388. DOI:10.1093/jcmc/zmy020

Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information

Technology, 15, 209-227. DOI: 10.1007/s10676-013-9321-6

Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news personalization: scalable

online collaborative filtering. Proceedings of the 16th international conference on World Wide Web (pp. 271-280).

de Pechpeyrou, P. (2009). How consumers value online personalization: a longitudinal

experiment. Direct Marketing: An International Journal, 3(1), 35-51.DOI:10.1108/17505930910945723

Dubois, E., & Blank, G. (2018). The echo chamber is overstated: the moderating effect of

political interest and diverse media. Information, Communication & Society, 21(5), 729

DOI:10.1080/1369118X.2018.1428656

Eirinaki, M., & Vazirgiannis, M. (2003). Web Mining for Web Personalization. ACM Transactions

on Internet Technology, 1(3), 1-27. DOI:10.1145/643477.643478

Fleder, D., & Hosanagar, K. (2009). Blockbuster Culture's Next Rise or Fall: The Impact of

Recommender Systems on Sales Diversity. Management Science, 55(5), 697-712.

DOI:10.1287/mnsc.1080.0974

Google.com (2022, December 15). Google privacy policy. [Press release]. Retrieved from

https://policies.google.com/privacy

Guo, X., Sun, Y., Ziyu, Y., & Nan, W. (2012). Privacy-Personalization Paradox in Adoption of

Mobile Health Service: The Mediating Role of Trust. PACIS 2012 Proceedings, 27-42.

Retrieved from https://aisel.aisnet.org/pacis2012/27/

Helberger, N., Karppinen, K., & D’Acunto, L. (2018). Exposure diversity as a design principle for

recommender systems. Information, Communication & Society, 21(2), 191-207.

DOI: 10.1080/1369118X.2016.1271900

Kalaignanam, K., Kushwaha, T., & Rajavi, K. (2018). How Does Web Personalization Create

Value for Online Retailers? Lower Cash Flow Volatility or Enhanced Cash Flows. Journal

of Retailing, 94(3), 265–279. DOI: 10.1016/j.jretai.2018.05.001

Koene, A., Perez, E. J., Carter, J. C., Statache, R., Adolphs, S., O’Malley, C., Rodden,

T., & McAuley, D. (2015). Privacy concerns arising from Internet service personalization

filters. Durham Research Online, 45(3), 167-171. DOI:10.1145/2874239.2874263

Möller, J., Trilling, D., Helberger, N., & van Es, B. (2018). Do not blame it on the algorithm: an

empirical assessment of multiple recommender systems and their impact on content

DOI:10.1080/1369118X.2018.1444076

Mulvenna, M.D., Anand, S.S., & Büchner, A.G. (2000). Personalization on the Net using Web

Mining. Communications of The ACM. 43(8), 122-125. DOI: 10.1145/345124.345165

Nguyen, T. T., Hui, P. M., Harper, F. M., Terveen, J., & Konstan, A. J. (2014). Exploring the Filter

Bubble: The Effect of Using Recommender Systems on Content Diversity. The

International world wide web conference committee (IW3C2), 677–686.

DOI:10.1145/2566486.2568012

Noor, U., Mansoor, M., & Shamim, A. (2022). Customers Create Customers!–Assessing the role

of perceived personalization, online advertising engagement and online users' modes in

generating positive e-WOM. Asia-Pacific Journal of Business Administration, Vol. ahead

of print No. ahead-of-print. https://doi.org/10.1108/APJBA-11-2021-0569

Pariser, E. (2011). The fitter bubble: What the internet Is hiding from you. New York: The

Penguin Press

RSA. (2019). RSA Data Privacy and Security Survey 2019: The growing data disconnect

Between consumers and businesses.https://www.rsa.com/content/dam/en/misc/rsa-data

privacy-and-security-survey- 2019.pdf

Salonen, V., & Karjaluoto, H. (2016). Web Personalization : The State of the Art and

Future Avenues for Research and Practice. Telematics and Informatics, 33(4), 1088-

DOI: 10.1016/j.tele.2016.03.004 Schwartz, B., & Ward, A. (2004). Doing better but feeling worse: The paradox of choice. John

iley & Sons, Inc. DOI:10.1002/9780470939338.

Schwartz, K. M. (2019). The personalization–privacy paradox explored through a privacy

calculus model and hofstede’s model of cultural dimensions. Honors Projects, 97

Stevenson, D., & Pasek, J. (2015). Privacy Concern, Trust, and Desire for Content

Personalization. Information and Internet Policy Paper. DOI: 10.2139/ssrn.2587541

Thurman, N., Moeller, J., Helberger, N., & Trilling, D. (2019). My Friends, Editors, Algorithms,

and I: Examining audience attitudes to news selection. Digital Journalism, 7(4), 447-469.

DOI: 10.1080/21670811.2018.1493936

Treiblmaier, H., Madlberger, M., Knotzer, N., & Pollach, I. (2004). Evaluating Personalization and

Customization from an Ethical Point of View: An Empirical Study. 37th Annual Hawaii International Conference on System Sciences, 1-10. DOI:10.1109/HICSS.2004.1265434

Yu, H. J. (2011). Is it worth it to be unethical? Consumers’ attitudes toward personalized

commercial emails. Journal of Database Marketing &Customer Strategy Management, 18, 274–285. DOI: 10.1057/dbm.2011.38

Zhang, R., Jun, M. & Palacios, S. (2023). M-shopping service quality dimensions and their

effects on customer trust and loyalty: an empirical study. International Journal of Quality & Reliability Management, 40(1). 169-191. DOI:10.1108/IJQRM-11-2020-0374