Personalized Learning Models in the 21st Century after the COVID-19 Pandemic
Main Article Content
Abstract
Personalized learning was learning by responding effectively to nature, needs and individual differences, which was a dynamic learning model that was highly suitable for the development of human potential. Especially in the 21st century with the application of learning technology and artificial intelligence widely and the world was moving towards completely globalization, enabling people to communicate, work and exchange knowledge with each other around the world which had a variety of learning resources covering all branches of science on the Internet could break the limits of personal learning in the past that could not be managed effectively. In addition, the global COVID-19 epidemic has caused humans to be unable to work or learn together as a large group. It was expected that personal learning would be an appropriate and widely applied learning model in the 21st century after the COVID-19 pandemic. This academic article was a systematic literature review from academic papers, research reports, academic articles, and related research articles, both domestic and international, presenting concepts covering 6 issues as follows: 1) Meaning of personalized learning, 2) personalized learning evolution, 3) phenomenon that influenced the change in life skills in the 21st century, 4) direction of personalized learning management in the 21st century, 5) trends of personalized learning management after the COVID-19 pandemic, and 6) personalized learning styles after the COVID-19 pandemic.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Allahar, H. (2014). Major global megatrends: implications for advanced and emerging countries. Researchjournali's – Journal of Management, 2(8), 1-18.
Baker, R. (2016). Using learning analytics in personalized learning. http://www.centeril.org
Benjamin, L. (1988). History of teaching machines. American psychologist, 43(9), 703–712.
Bill & Melinda Gates Foundation. (2010). Next generation learning: the intelligent use of technology to develop innovative learning models and personalized. https://docs.gatesfoundation.org/ documents/nextgenlearning.pdf.
Brass, J. (2020). Personalized learning: a history of the present. Journal of curriculum theorizing, 35(2).
Bulger, M. (2016). Personalized learning: The conversations we’re not having. Working paper 07.22.2016. New York, NY: Data & Society Research Institute.
Chareonwongsak, K. (2006). Creative Thinking (7th ed.). Bangkok: Success Media.
Cook, D.J., Mulrow, C. D. & Haynes, R. B. (1997). Systematic reviews: synthesis of best evidence for clinical decisions. Annals of internal medicine, 126(5), 376-380.
Crowder, N. (1959). Automatic tutoring by means of intrinsic programming. Automatic teaching. The state of the art, New York: John Wiley and Sons.
Crowder, N. (1963). On the differences between linear and intrinsic programing. The Phi Delta Kappan, 44(6), 250–254.
Delors, J. (1998). Education for the twenty-first century: issues and prospects. the United nations educational, scientific and cultural organization. France: Universitaires de France.
Duncan, A. (2010). Transforming American education: learning powered by technology. National education technology plan 2010. Washington, DC: U.S. Department of Education office of Educational Technology. from https://www.ed.gov/sites/ default/files/netp2010.pdf.
HELLO Thailand, (2021). Delve into 10 future educational trends that parents must know!. https://th.hellomagazine.com/education/ 10-future-trends-of-education/.
HoLon IQ. (2021). Education in 2030: five scenarios for the future of learning and talent. https://www.holoniq.com/wp-content/ uploads/2018/06/HolonIQ-Education-in-2030.pdf.
Skinner, B. F. (1968). The technology of teaching. New York, NY: Meredith Corporation.
Skinner, B. F. (1986). Programmed instruction revisited. Phi Delta Kappan, 68(2), 103–110.
New Classrooms. (2015). Teach to one: math: major concept map. http://www.newclassrooms.org/wp- content/uploads/2016/07/ New_Classrooms_Teach_to_One_Math_ Concept_Map.pdf.
New Classrooms. (2020). Teach to one math: a new classrooms solution. https://www.newclassrooms.org/.
Pelletier, K., Brown, M., Brooks, D. C., Mark McCormack, M., Reeves, J., Arbino, N., Bozkurt, A., Crawford, S., Czerniewicz, L., Gibson, R., Linder, K., Mason, J. & Mondelli, V. (2021). 2021 educause horizon report, teaching and learning edition. https://www.learntechlib. org/d/219489/.
Pressey, S. L. (1933). Psychology and the new education. New York, NY: Harper.
Richmond, K. (1963). Teachers and machines: an introduction to the theory and practice of programmed learning. London, UK: Collins.
Thompson, G. (2016). Computer adaptive testing, big data and algorithmic approaches to education. British Journal of Sociology of Education, 38(6), 827–840.
Thompson, G., & Cook, I. (2016). The logic of data-sense: Thinking through learning personalisation. Discourse: Studies in the Cultural Politics of Education, 38(5), 740–754.
U.S. Department of Education. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. Washington, D.C.: U.S. Department of Education Office of Educational Technology
Williamson, B. (2015). Governing software: Networks, databases and algorithmic power in the digital governance of public education. Learning, Media and Technology, 40(1), 83–105.
Williamson, B. (2017). Educating Silicon Valley: Corporate education reform and the reproduction of the techno-economic revolution. Review of Education, Pedagogy, and Cultural Studies, 39(3), 265–288.