Trace DNA Retrieval from Forensic Footwear Evidence

Main Article Content

Kittisak Sirichantrawongse

บทคัดย่อ

                Footwear in forensic science is the evidence that provides important information which can be used in assisting criminal investigations in several facets, for instance,
determining the type of footwear that has made the impression at the crime scene, establishing the origin of debris found on footwear and also identifying a person who has
worn them. Forensic footwear evidence may come in various types at crime scenes such as sneakers, slippers, sandals, flip-flops, etc. In most cases where shoeprints were
prevalent, forensic examiners would not only establish a link between the crime scene shoe impression with the specific piece of footwear by comparing the shoe impression
against the shoes in question to determine whether or not the questioned shoes were at the crime scene or comparing them against the database (if available) but also prove who the wearer was through DNA analysis. According to Locard’s exchange principle which concerns physical contact between two surfaces stating that every touch leaves a trace. When two objects comes into contact, there will always be an exchange of physical traces between the two surfaces [1].For footwear, the wearer’s feet definitely come into contact with the shoes. Therefore, it is anticipated that the skin cells that having deposited in the footwear definitely belong to the wearer. DNA typing from those sloughed skin cells can be used to identify the person who has worn the footwear. Up to the recent years there has been a minimal research on forensic footwear evidence. In Thailand there was no publication on DNA analysis from footwear. Sport shoes and Flip-flops are relatively popular and not infrequent to be found at crime scenes. DNA analysts often look for trace DNA besides the blood stain. The consistency of DNA profile production results from these footwear as trace DNA evidence is never seen.

Article Details

บท
บทความวิชาการ

References

1. Locard, E. The analysis of dust traces, Part 1. The American Journal of Police
Science.1930;1:276-98.

2. van Ooschot, R. A. H., Ballantyne, K. N., Mitchell, R. J. Forensic trace DNA: a review.
Investigative Genetics 2010 1:14 [doi:10.1186/2041-2223-1-14]

3. Raymond, J. J., van Ooschot, R. A. H., Gunn, P. R., Walsh, S. J., Roux, C. Trace evidence
characteristics of DNA: A preliminary investigation of the persistence of DNA at
crime scenes. Forensic Science International: Genetics.2009;4(1):26-33. [doi:
10.1016/jsigen.2009.04.002].

4. Raymond, J. J., Walsh, S. j., Roland A. H., van Oorschot, Gunn P. R., Evans, L.
Assessing trace DNA evidence from a residential burglary: Abundance,
transfer, and persistence. Forensic Science International: Genetics Supplement
Series.2008;1(1):442-3. [doi: 10.1016/j.fsigss.2007.10.040].

5. Lowe, A., Murray, C., Whitaker, J., Tully, G., Gill, P. The propensity of individuals to
deposit DNA and secondary transfer of low level DNA from individuals to
inert surfaces. Forensic Sci Int.2002;129(1):25-34. [doi: 10.1016/S0379-
0738(02)00207-4].

6. Kelley, S. Assessment of DNA transfer involving routine human behavior. Texas:
University of North Texas Health Science Center; 2010.

7. Ladd, C. Adamonwicz, M. S., Bourke, M. T., Scherczinger, C. A., Lee, H. C. A systematic
analysis of secondary DNA transfer. Forensic Sci. 1999;44(6):1270-2.

8. Tamariz, J. Wong A., Perez, J., Prinz, M., Caragine, T. A. Investigation of the detection
of DNA through secondary and tertiary transfer. New York: Office of the Chief
Medical Examiner of the City of New York, Biology Dof.

9. Phipps, M., Petricevic, S. The tendency of individuals to transfer DNA to handled
items. Forensic Sci Int. 2007;168(2-3):162-8.[doi: 10.1016/jforsciint.2006.07.010].

10. van Oorschot, R. A. H., Phelan D. G., Furlong, S., Scarfo, G. M., Holding, N. L.,
Cummins, M. J. Are you collecting all the available DNA from touched
objects? International Congress Series. 2003;1239:803-7.

11. Sirichantrawongse, K., Yanatatsaneejit, P., Rerkamnuaychoke, B. DNA Retrieval on
Flip-flops.การประชุมวิชาการ ครั้งที่ 1 ประจ าปี พ.ศ. 2553 “นิติพันธุศาสตร์ไทย ก้าวไกลสู่สากล”
http://www.forensic.sc.mahidol.ac.th/proceeding/52_kittisak.pdf

12. Petricevic, S. F., Bright, J. A., Cockerton, S. L. DNA profiling of trace DNA recovered
from bedding. Forensic Sci Int.2006;159(1):21-6.
[doi:0.1016/j.forsciint.2005.06.004]

13. Djuric, M., Varljen, T., Stanojevic, A., Stojkovic, O. DNA typing from handled items.
Forensic Science International: Genetics Supplement Series.2008;1(1):411-2. [doi:
10.1016/j.fsigss.2007.10.161].

14. Abaz, J. Walsh, SJ, Curran, JM, Moss, DS, Cullen J, Bright J-A. Comparison of the
variables affecting the recovery of DNA from common drinking containers.
Forensic Sci Int. 2002;126(3):233-40.[doi: 10.1016/s0379-0738(02)00089-0].

15. Barbaro, A., Comaci, P. LCN DNA typing from touched objects. International Congress
Series.2006:1288:553-5. [doi: 10.1016/j.ics.2005.09.114].

16. Hansson, O., Finnebraaten, M., Heitmann, I.K., Ramse, M., Bouzga, M. Trace DNA
collection- Performance of minitape and three different swabs. Forensic
Science Interntional: Supplement Series. 2009:2(1):189-90.[doi:
10.1016/j.fsigss.2009.08.098].

17. Wickenheiser, R. Trace DNA: a review, discussion of theory, and application of
the transfer of trace quantities of DNA through skin contact. J Forensic Sci.
2002:47(3):442-50

18. Bright, J., A., Petricevic, Susan, F. Recovery of trace DNA and its application to
DNA profiling of shoe insoles. Forensic SciInt..2004;145(1):7-12. [doi:
10.1016/j.forsciint.2004.03.016].

19. Franke, N., Augustin, C., Puschel, K. Optimization of DNA-extraction and typing
from contact stains. Forensic Science International: Genetics Supplement
Series.2008;7(1)423-5. [doi: 10.106/jfsigss.2007.08.006].

20. Sarah M. Thomasma, David R. Foran. The Influence of Swabbing Solutions on DNA
Recovery from Touch Samples. J. Forensic Sci. 2013: 58(2):465-9.[doi:
10.111/1556-4029.12036].

21. Phetpeng S, Kitpipit T, Asavutmangkul V, Duangshatome W, Pongsuwan W,
Thanakiatkrai P. Touch DNA collection from improvised explosive devices:
a comprehensive study of swabs and moistening agents. Forensic Sci Int.
Genetics Supplement Series. 2013; 4(1)29-30.[doi: 10.1016/j.fsigss.2013.10.014]

22. Djuric, M., Varljen, T., Stanojevic, A., Stojkovic, O. DNA typing from handled items.
Forensic Science International: Genetics Supplement Series.2008;1(1):411-2. [doi:
10.1016/j.fsigss.2007.10.161].

23. van Oorschot, R. A. H., Weston, R. K., Jones, M. K. Retrieval of DNA from touched objects.
Proceedings of the 14thInternation Symposium on the Forensic Sciences of
Australia and New Zealand Forensic Science Society. 1998.

24. Thomasma, S. M. Optimization of collection techniques for touch DNA from
fingerprints using various swabbing solutions in forensic applications. 2010.

25. Pang, B. C. M., Cheung, B. Double swab technique for collecting touched evidence.
Legal Med.2007;9(4):181-4. [doi: 10.1016/j.legalmed.2006.12.003].

26. Sweet, D., Lorente, M., J-A., Valenzuela, A., Villanueva, E. An improved method to
recovery saliva from human skin: the double swab technic. J Forensic Sci.
1997;83(3):320-22. [doi: 10.1016/50379-0738(96)02034-8].

27. Ricci, U., Marchi, C., Previdere, C., Fattorini, P. Quantification of human DNA by real-time
PCR in forensic casework. International Congress Series.2006:1288:750-2. [doi:
10.1016/j.ics2005.11.135].

28. Johns, L.M., Thakor, A., Ioannou, P., Kerai, J., Thomson, J.A. Validation of Quantifiler
(TM) Human Quantification Kit for forensic casework. International Congress
Series.2006:1288:762-4. [doi: 10.1016/j.ics.2005.09.083].

29. Sirichantrawong, K. DNA Recovery from Flip-flops. Master of Science. Mahidol
University. 2011:39-40.

30. Hillier, E., Dixon, P., Stewart, P., Yamashita, B., Lama, D. Recovery of DNA from Shoes.
Canadian Society of Forensic Science Journal. 2005-38(3):143-150.

31. van Oorschot, R. A. H., Jones, M. K. DNA fingerprints from fingerprints. Nature.
1997;387:767.