STUDY GUIDELINES FOR SOLVING DIGITAL BUSINESS MANAGEMENT USING CHATBOT INNOVATION
Main Article Content
Abstract
This research aimed to study approaches to solving digital business management problems using chatbot innovation. This mixed-methods research was conducted by integrating artificial intelligence under a Human-in-the-Loop (HITL) framework, combined with traditional qualitative research methods, to achieve more accurate and precise research results. The study consisted of four components:
1) Documentary research with a sample of 35 credible documents; 2) Content analysis of 25 business websites and social commerce platforms with prominent chatbot integration; 3) Online case study research involving 5 digital businesses; and 4) Chatbot creation platform research involving 2 chatbot creation platforms. All samples were selected through purposive sampling based on predetermined criteria. The research tools included: (1) artificial intelligence tools; (2) specialized tools comprising keyword research tools and web scraping tools; and (3) structured and unstructured data recording forms. Data were analyzed and interpreted using inductive analysis combined with constant comparative analysis. Data reliability was verified through triangulation in various dimensions, and the findings converged in the same direction.
The research results showed that chatbot innovation could solve digital business management problems in various areas, including: 1) Customer support, 2) Sales and marketing, 3) Data analytics, 4) Project management, and 5) Human resources management.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกเรื่องได้รับการตรวจความถูกต้องทางวิชาการโดยผู้ทรงคุณวุฒิ ทรรศนะและข้อคิดเห็นในบทความ Journal of Global of Perspectives in Humanities and Social Sciences (J-GPHSS) มิใช่เป็นทรรศนะและความคิดของผู้จัดทำจึงมิใช่ความรับผิดชอบของบัณฑิตวิทยาลัย มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ กองบรรณาธิการไม่สงวนสิทธิ์การคัดลอก แต่ให้อ้างอิงแหล่งที่มา
References
Abdelhamid, S., Mallari, T. & Aly, M. (2023). Cybersecurity Awareness, Education, And Workplace Training Using Socially Enabled Intelligent Chatbots. Cham: Springer Nature Switzerland.
Banisharif, M., Mazloumzadeh, A., Sharbaf, M. & Zamani, B. (2022). Automatic generation of business intelligence chatbot for organizations. In 2022 27th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-5). IEEE.
Barbosa et al. (2022). UX of Chatbots: An Exploratory Study on Acceptance of User Experience Evaluation Methods. In ICEIS (2) (pp. 355-363).
Chaves, A. P., Egbert, J., Hocking, T., Doerry, E. & Gerosa, M. A. (2022). Chatbots language design: The influence of language variation on user experience with tourist assistant chatbots. ACM Transactions on Computer-Human Interaction. 29(2), 1-38.
Correa, J. S., Neto, A. P. d. A., Pinto, G. R., Lima, L. D. B. & Teles, A. S. (2023). Lhia: A smart chatbot for breastfeeding education and recruitment of human milk donors. Applied Sciences. 13(12), 6923.
Darapaneni, N., et al. (2022). Customer support Chatbot for electronic components. In 2022 Interdisciplinary Research in Technology and Management (IRTM) (pp. 1-7). IEEE.
Dutta, D., Mishra, S. K. & Tyagi, D. (2023). Augmented employee voice and employee engagement using artificial intelligence-enabled chatbots: a field study. The International Journal of Human Resource Management. 34(12), 2451-2480.
Eyada, B. & Ahmed, N. (2022). Effectiveness of CHATBOT Advertising on Consumer Buying Decision: An Analytical Study. Journal of Design Sciences and Applied Arts. 3(2), 74-87.
Fitria, T. N., Simbolon, N. E. & Afdaleni, A. (2023). Chatbots as online chat conversation in the education sector. International Journal of Computer and Information System (IJCIS). 4(3), 93-104.
Garcia Valencia, O. A., et al. (2023). Enhancing Kidney Transplant Care through the Integration of Chatbot. Healthcare.
Huseynov, F. (2023). Chatbots in digital marketing: Enhanced customer experience and reduced customer service costs. In Contemporary Approaches of Digital Marketing and the Role of Machine Intelligence (pp. 46-72). IGI Global.
Jiang, H., Cheng, Y., Yang, J. & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior. 134, 107329.
Jitvirar, K. (2024). The secret to using Artificial Intelligence to write research articles. AI Book Nexus.
Krishnan, C., Gupta, A. & Singh, G. (2022). Impact of artificial intelligence-based chatbots on customer engagement and business growth. In Deep Learning for Social Media Data Analytics (pp. 195-210). Springer.
Kumar, A., Negi, H. C. S. & Nikylina, O. (2023). Artificial Intelligence in Reinventing Strategic Human Resources. In Disruptive Artificial Intelligence and Sustainable Human Resource Management. (pp. 97-110). River Publishers.
Kumar, S. et al. (2024). Applications, Challenges, and Future Directions of Human-in-the-Loop Learning. IEEE Access.
Luo, B., Lau, R. Y., Li, C. & Si, Y. W. (2022). A critical review of state of the art chatbot designs and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 12(1), e1434.
Meng, X.-L. (2023). Data Science and Engineering with Human in the Loop, Behind the Loop, and Above the Loop. Retrieved from https://hdsr.mitpress.mit.edu/pub/812vijgg/release/3
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J. & Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review. 56(4), 3005-3054.
Mudofi, L. N. H. & Yuspin, W. (2022). Evaluating Quality of Chatbots and Intelligent Conversational Agents of BCA (Vira) Line. Interdisciplinary Social Studies. 1(5), 532-542.
Mukul, K. & Mishra, R. (2022). Project Management Dilemma at Alpha Tech Solutions Private Limited. SAGE Publications: SAGE Business Cases Originals.
Pillai, R., Ghanghorkar, Y., Sivathanu, B., Algharabat, R. & Rana, N. P. (2023). Adoption of artificial intelligence (AI) based employee experience (EEX) chatbots. Information Technology & People.
Ranveera, R., Kesharwani, A. & Kumari, S. (2021). Customer support chatbot using natural language processing. Retrieved from https://repo.ijiert.org/index. php/i jiert/article/view/2604
Sahadevan, S. (2023). Project Management in the Era of Artificial Intelligence. European Journal of Theoretical and Applied Sciences. 1(3), 349-359.
Voege, P., Abu Sulayman, I. I. & Ouda, A. (2022). Smart chatbot for user authentication. Electronics. 11(23), 4016.
Wang, F.-Y., Yang, J., Wang, X., Li, J. & Han, Q.-L. (2023). Chat with chatgpt on industry 5.0: Learning and decision-making for intelligent industries. IEEE/CAA Journal of Automatica Sinica. 10(4), 831-834.
Wang, X., Lin, X. & Shao, B. (2022). How does artificial intelligence create business agility? Evidence from chatbots. International journal of information management. 66, 102535.