DEVELOPMENT OF THE DOUBLE LAYER SCORING RUBRIC FOR SCORING PHYSICS PROBLEM-SOLVING PERFORMANCE
Main Article Content
Abstract
This research aimed to 1) develop and validate the double layer scoring rubric for scoring physics problem-solving performance, and 2) validate the measurement model of physics problem-solving performance. Participants were 120 eleventh and twelfth graders which were randomized by using multistage random sampling method. Materials used in this study were a physics problem-solving test and a rater training manual. A Cohen’s kappa and a confirmatory factor analysis were performed to analyze data.
The results can be summarized as follows: 1) The developed physics problem-solving performance scoring rubric in form of double layer scoring rubric comprised four dimensions according to physics problem-solving strategy. The scoring rubric was aligned with the definition of physics problem-solving performance and also had high inter-rater reliability (Cohen's kappa ranged from 0.79 to 1.00). And 2) the confirmatory factor analysis results of the measurement model of physics problem-solving performance consisting of four indicators (i.e., analyzing the problem, planning a solution, solving the problem, and evaluating a solution) showed that the measurement model fit the empirical data (c2(2) = 2.64, p = .27, CFI = 1.00, TLI = 0.99, RMSEA = 0.05, SRMR = 0.01).
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความทุกเรื่องได้รับการตรวจความถูกต้องทางวิชาการโดยผู้ทรงคุณวุฒิ ทรรศนะและข้อคิดเห็นในบทความวารสารบัณฑิตศึกษา มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ มิใช่เป็นทรรศนะและความคิดของผู้จัดทำจึงมิใช่ความรับผิดชอบของบัณฑิตวิทยาลัย มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ กองบรรณาธิการไม่สงวนสิทธิ์การคัดลอก แต่ให้อ้างอิงแหล่งที่มา
References
Battelle for Kids. (2019). Framework for 21st century learning definitions. Retrieved from https://static.battelleforkids.org/documents/p21/P21_Framework_DefinitionsBFK.pdf
Belikov, B. S. (1989). General methods for solving physics problems. Moscow: Mir Publishers.
Burkholder, E. W., et al. (2020). Template for teaching and assessment of problem solving in introductory physics. Physical Review Physics Education Research. 16(1), 010123.
Docktor, J. L., et al. (2016). Assessing student written problem solutions: A problem- solving rubric with application to introductory physics. Physical Review Physics Education Research. 12(1), 010130.
Gok, T. (2011). Development of problem solving strategy steps scale: study of validation and reliability. The Asia-Pacific Education Researcher. 20(1), 151-161.
Hamzah, M. S. G. B., Idris, N., Abdullah, S. K., Abdullah, N., & Muhammad, M. M. (2015). Development of the double layer rubric for the study on the implementation of school-based assessment among teachers. US-China Education Review. 5(4), 245-256.
Hegde, B. & Meera, B. N. (2012). How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving. Physical Review Special Topics-Physics Education Research. 8(1), 010109.
Heller, P., Keith, R. & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics. 60(7), 627-636.
Huffman, D. (1997). Effect of explicit problem solving instruction on high school students' problem-solving performance and conceptual understanding of physics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching. 34(6), 551-570.
Johnson, R. L., Penny, J. A. & Gordon, B. (2009). Assessing performance: design, scoring, and validating performance tasks. New York: The Guilford Press.
Kanjanawasee, S. (2012). thritsadī kānthotsō̜p nǣo mai [Modern test theories]. 4th ed. Bangkok: Chulalongkorn University Press.
Kline, R. B. (2016). Principles and practice of structural equation modeling. 4th ed. New York: Guilford publications, Inc.
Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics. 33(1), 159-174.
Ling, S., Sanny, J. & Moebs, B. (2020). Solving problems in physics. Retrieved from https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)
Naqiyah, M., Rosana, D., Sukardiyono & Ernasari. (2020). Developing instruments to measure physics problem solving ability and nationalism of high school student. International Journal of Instruction. 13(4), 921-936.
Selçuk, G. S. & Çalýskan, S. (2008). The effects of problem solving instruction on physics achievement, problem solving performance and strategy use. Latin-American Journal of Physics Education. 2(3), 151-166.
Sirichoti, N. & Tangdhanakanond, K. (2016). pati samphan rawāng withīkān pramœ̄n tonʻēng læ khwāmsāmāt thāng witthayāsāt thī mī tō̜ phatthanākān thaksa patibatkān thotlō̜ng khō̜ng nakrīan [The interaction between self-assessment methods and science ability on experimental skill development of students]. An Online Journal of Education. 11(4), 712-728.
Soper, D. S. (2020). A-priori sample size calculator for structural equation models. Retrieved from http://www.danielsoper.com/statcalc
Tangdhanakanond, K. (2020). kān wat læ pramœ̄n thaksa kān patibat [Measuring and assessing performance]. 3rd ed. Bangkok: Chulalongkorn University Press.
Weston, R. & Gore, Jr., P. A. (2006). A brief guide to structural equation modeling. The counseling psychologist. 34(5), 719-751.
Zewdie, Z. M. (2014). An investigation of students’ approaches to problem solving in physics courses. International Journal of Chemical and Natural Science. 2(1), 77-89.