Factors Influencing the Intention to Use the Service Innovation of “Mor Prom” Application in Bangkok
Keywords:
Service Innovation, Application “Mor Phom”, Intention to use, Information TechnologyAbstract
The purposes of this research is 1) to study the factors influencing the intention to use the service innovation of “Mor Prom” application in Bangkok, and 2) to study the direct influence, indirect influence and total influence of variables affecting the service innovation of “Mor Prom” application in Bangkok. This research was based on Unified Theory of Acceptance and Use of Technology (UTAUT) model. Quantitative data analysis was conducted. An online questionnaire was used as a research instrument for data collection from the sample of 400 “Mor Prom” application users in Bangkok. Data were analyzed by Multiple Correlation Analysis and Path Analysis. The major findings revealed that the model was consistent with the empirical data. When individual factors of the model were considered, it was found that Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), and Intention to Use had positive influence to use the service innovation of “Mor Prom” application. However, technology anxiety had no influence on the intention to use the service innovation of “Mor Prom” application. The findings would be beneficial for relevant parties to improve and develop innovations in medical services, policy formulation to develop health information through other applications. Furthermore, the expected benefits include the development of medical information technology system to enable people to access health services through an application in a simple and easy manner, creating value in service and the efficiency of medical information services as well as medical communication for enhancing understanding and ultimately maximizing public interest.
References
กรมควบคุมโรค. (2563). โรคติดเชื้อไวรัสโคโรนา 2019 (COVID-19). ค้นเมื่อ 5 เมษายน 2563, จาก https://ddc.moph.go.th/viralpneumonia/ind_world.php
กระทรวงสาธารณสุข. (2564). ระบบบริหารจัดการวัคซีนโรคโควิด-19 (COVID-19). ค้นเมื่อ 4 เมษายน 2564, จาก https://spd.moph.go.th/new_bps/morprom
ปกรณ์ อุดมธนะสารสกุล. (2564). อิทธิพลของนโยบายรัฐบาลและการจัดการภาวะวิกฤตที่มีต่อกลยุทธ์การดำเนินงานของวิสาหกิจขนาดกลางและขนาดย่อมภาคบริการในจังหวัดเชียงใหม่ ในช่วงวิกฤตของโรคระบาดโรคโควิด-19 (COVID-19). วารสารการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม, 13 (2), 75-92.
สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ฝ่ายสร้างสรรค์สื่อและผลิตภัณฑ์. (2564). วัคซีนโรคโควิด-19 (COVID-19). ค้นเมื่อ 24 มีนาคม 2564, จาก https://waa.inter.nstda.or.th/stks/pub/2021/20210316-covid19-vaccine-handbook.pdf
สำนักงานสภาพัฒนาการเศรษฐกิจและสังคมแห่งชาติ. (2562). แผนพัฒนาภาคกลางและพื้นที่กรุงเทพมหานคร พ.ศ. 2560–2565 ฉบับทบทวน. ค้นเมื่อ 8 กุมภาพันธ์ 2564, จาก https://www.nesdc.go.th/ewt_dl_link.php?nid=7525
สำนักงานสถิติแห่งชาติ กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2563). สำรวจการมีการใช้เทคโนโลยีสารสนเทศและการสื่อสารในครัวเรือน พ.ศ. 2563. ค้นเมื่อ 12 มีนาคม 2563, จาก http://www.nso.go.th/sites/2014/DocLib13/Forms/AllItems.aspx
สำนักทะเบียนกลาง กรมการปกครอง. (2563). จำนวนราษฎรทั่วราชอาณาจักร ตามหลักฐานการทะเบียนราษฎร ณ วันที่ 31 ธันวาคม 2563. ค้นเมื่อ 17 มีนาคม 2564, จาก https://stat.bora.dopa.go.th/stat/ statnew/statINTERNET/#/
อภิวรรณ์ หมื่นสอาด และพิทยา ผ่อนกลาง. (2564). ปัจจัยที่มีผลต่อความพึงพอใจในคุณภาพการให้บริการ โมบายแบงก์กิงของผู้ใช้บริการในจังหวัดนครราชสีมา. วารสารการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม, 13 (2), 153-164.
อาทิตย์ เกียรติกำจร และภูมิพร ธรรมสถิตเดช. (2557). ปัจจัยที่มีอิทธิพลต่อการยอมรับเทคโนโลยี: กรณีศึกษาการใช้เทคโนโลยี Interactive Whiteboard ในการเรียนการสอนของคณะแพทยศาสตร์ศิริราชพยาบาล. การประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษา ครั้งที่ 15. 28 มีนาคม 2557. ณ วิทยาลัยการปกครองท้องถิ่น มหาวิทยาลัยขอนแก่น. 545-555.
Ahmad, S. Z., & Khalid, K. (2017). The adoption of M-government services from the user’s perspectives: Empirical evidence from the United Arab Emirates. International Journal of Information Management, 37(5), 367-379.
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110.
Alam, M. Z., Hoque, Md. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing. International Journal of Information Management, 50, 128–143.
Alam, M. Z., Hu, W., & Barua, Z. (2018). Using the UTAUT Model to Determine Factors Affecting Acceptance and Use of Mobile Health (mHealth) Services in Bangladesh. Journal of Studies in Social Sciences, 17(2), 137-172.
Alam, M. Z., Hu, W., Hoque, Md. R., & Kaium, Md. A. (2020). Adoption intention and usage behavior of mHealth services in Bangladesh and China: A cross-country analysis. International Journal of Pharmaceutical and Healthcare Marketing, 14(1), 37-60.
Ali, F., Nair, P. K., & Hussain, K. (2016). An assessment of students' acceptance and usage of computer supported collaborative classrooms in hospitality and tourism schools. Journal of Hospitality, Leisure, Sport & Tourism Education, 18, 51-60.
Astani, N. M. M. W., Ati, N. L. P. A. P., & Ernawaty, E. (2021). Analysis of Acceptance of e-Health Application by Users in Primary Healthcare Center in Surabaya City, The Indonesian Journal of Public Health, 16(1), 66-78.
Bawack, R. E., & Kamdjoug, J. R. K. (2018). Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. International journal of medical informatics, 109, 15-22.
Barua, Z. & Barua, A. (2021). Acceptance and usage of mHealth technologies amid COVID-19 pandemic in a developing country: the UTAUT combined with situational constraint and health consciousness, Journal of Enabling Technologies, 15(1), 1-22.
Best, J., & J. Kahn (1998). Research in education (8th ed.). Boston : Allyn and Bacon.
Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B. (2012, June). Factors influencing the Thai elderly intention to use smartphone for e-Health services. In 2012 IEEE symposium on humanities, science and engineering research, (pp. 479-483). IEEE.
Budi, N. F. A., Adnan, H. R., Firmansyah, F., Hidayanto, A. N., Kurnia, S., & Purwandari, B. (2021). Why do people want to use location-based application for emergency situations? The extension of UTAUT perspectives. Technology in Society, 65, 1-10.
Chang, S. J., & Im, E-O. (2013). A path analysis of Internet health information seeking behaviors among older adults. Geriatric Nursing, 35(2), 137–41.
Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York : Harper Collins Publishers.
Cossio, M., & Gilardino R. E. (2021). Would the Use of Artificial Intelligence in COVID-19 Patient Management Add Value to the Healthcare System?. Frontiers in Medicine, 8, 1-5.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340.
Farhady, S., Sepehri, M. M., & Pourfathollah, A. A. (2020). Evaluation of effective factors in the acceptance of mobile health technology using the unified theory of acceptance and use of technology (UTAUT), case study: Blood transfusion complications in thalassemia patients. Medical Journal of the Islamic Republic of Iran, 34, 83-90.
Gagnon, M. P., Simonyan, D., Ghandour, E. K., Godin, G., Labrecque, M., & Ouimet, M. (2016). Factors influencing electronic health record adoption by physicians: A multilevel analysis. International Journal of Information Management, 36, 258–270.
Giao H. N. K., Vuong, B. N., Tung, D. D., & Quan, T. N. (2020). A Model of Factors Influencing Behavioral Intention to Use Internet Banking and The Moderating Role of Anxiety: Evidence from Vietnam. WSEAS Transactions on Business and Economics, 18, 10-20.
Guo, X., Sun, Y., Wang, N., Peng, Z., & Yan, Z. (2013). The dark side of elderly acceptance of preventive mobile health services in China. Electronic Markets, 23(1), 49–61.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ : Prentice hall.
Han, S., Mustonen, P., Seppanen, M., & Kallio, M. (2004). Physicians' behavior intentions regarding a mobile medical information system: An exploratory study. AMCIS 2004 Proceedings, 330, 2763-2771.
Hoque, M. R. (2016). An empirical study of mHealth adoption in a developing country: the moderating effect of gender concern. BMC medical informatics and decision making, 16(1), 1-10.
Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of management information systems, 13(1), 127-143.
Khan, I. U., Yu, Y., Hameed, Z., Khan, S. U., & Waheed, A. (2018). Assessing the Physicians' Acceptance of E-Prescribing in a Developing Country: An Extension of the UTAUT Model with Moderating Effect of Perceived Organizational Support. Journal of Global Information Management (JGIM), 26 (3), 121-142.
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand's community health centers: Applying the UTAUT model. International journal of medical informatics, 78(6), 404-416.
Latsuzbaia, A., Herold, M., Bertemes, J. P., & Mossong, J. (2020). Evolving social contact patterns during the COVID-19 crisis in Luxembourg. PloS one, 15(8), 1-13.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1-55.
Lian, J. W. (2015). Critical factors for cloud based e-invoice service adoption in Taiwan: An empirical study. International Journal of Information Management, 35(1), 98-109.
Lin, C. P., & Anol, B. (2008). Learning Online Social Support: An Investigation of Network Information Technology Based on UTAUT. Cyberpsychol Behav, 11(3), 268-272.
Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International journal of information management, 34(1), 1-13.
Nunnally, J. C. (1978) Psychometric theory (2nd Ed.). New York : McGraw-Hill.
Nuq, P. A., & Aubert, B. (2013). Towards a better understanding of the intention to use eHealth services by medical professionals: The case of developing countries. International Journal of Healthcare Management, 6(4), 217-236.
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in human behavior, 61, 404-414.
Or, CK., & Karsh, B-T. (2009). A systematic review of patient acceptance of consumer health information technology. Journal of the American Medical Informatics Association, 16(4), 550–60.
Parayitam, S., Desai, KJ., Desai, MS., & Eason, MK. (2010). Computer attitude as a moderator in the relationship between computer anxiety, satisfaction, and stress. Computers in Human Behavior, 26(3), 345– 352.
Refat, Md. R. A., Palvinderjit Kaur, P., & Ramiah, S. P. (2020). E-Healthcare-Personalized Health Monitoring System. International Journal of Current Research and Review, 12(21), 150-154.
Rovinelli, R., & Hambleton, R. K. (1976). On the use of content specialists in the assessment of criterion-referenced test item validity. Washington, D.C. : ERIC.
Saade´ R.G., & Kira, D. (2006). The emotional state of technology acceptance. Issues in informing science and information technology, 3, 529–539.
Semiz, B.B., & Semiz, T. (2021). Examining consumer use of mobile health applications by the extended UTAUT model. bmij, 9(1), 267-281.
Shiferaw KB, Mengiste SA, Gullslett MK, Zeleke AA, Tilahun B, Tebeje T, et al. (2021). Healthcare providers’ acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. PLoS ONE, 16(4), 1-15.
Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education, 94, 252-275.
Sun, N., & Rau, P. L. P. (2015). The acceptance of personal health devices among patients with chronic conditions. International journal of medical informatics, 84(4), 288-297.
Suroso, J. S., & Sukmoro, T. C. (2021). Factors Affecting Behavior of The Use of Healthcare Mobile Application Technology in Indonesian. Journal of Theoretical and Applied Information Technology, 99(15), 3923-3934.
Tamilmani, K., Rana, P.N., Wamba, F. S., & Dwivedi, R. (2021). The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. International Journal of Information Management, 57, 1-16.
Tojib, D., & Tsarenko, Y. (2012). Post-adoption modeling of advanced mobile service use. Journal of Business Research, 65(7), 922-928.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y.L., & Xu, x. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178.
Yamane, T. (1967). Statistics, an introductory analysis, 2nd Ed. New York : Harper & Row.
Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government information quarterly, 32(4), 429-440.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Accountancy and Management
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารการบัญชีและการจัดการ
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยมหาสารคาม และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว