The Agrihood Design: Valuation of Ecosystem Services for NbS Visions in Peri-urban Housing Estate Development, Bangkok, Thailand

Main Article Content

Kim Irvine
Fa Likitswat
Alisa Sahavacharin
Asan Suwanarit
Tararat Lertwarapornpong
Detchphol Chitwatkulsiri

Abstract




Nature-based Solution (NbS) designs increasingly are being implemented to reduce environmental impacts of urban development and enhance community resiliency to disruptions ranging from floods to climate change to Covid-19. But, the question remains, how do we assess the ecosystem service benefits provided by competing NbS designs in order to optimize such benefits? As such, the objective of this study was to develop and trial an assessment approach for the valuation of ecosystem services in a peri-urban area of Bangkok, Thailand. In our evaluations we considered the ecosystem service benefits of: i) water yield; ii) sediment yield; iii) nutrient yield; iv) carbon sequestration; v) urban heat island mitigation; vi) crop production; vii) habitat quality; and viii) aesthetics. Our ecosystem services valuation approach was tested using three case studies in peri-urban Bangkok, Khlong Luang, Pathum Thani: i) an existing new single detached housing development in the area; ii) an area in its currently undeveloped, open and scrub forest state; and iii) the same area as (ii), but theoretically developed using an Agrihood design concept. The valuation approach included a combination of mathematical modeling for the water, sediment, and nutrient yield ecosystem services and an empirical, data-driven approach for urban cooling, carbon sequestering, crop production, habitat quality, and aesthetics. While the existing housing development design was meant to be relatively green and nature-oriented, the Agrihood design outperformed it in every ecosystem service category, including habitat quality and aesthetics. The Agrihood design also had lower sediment and nutrient yields and mean concentrations as compared to current (natural) conditions at the site, which is attributed to the inclusion of constructed wetlands in the design for the main drainage canal. This work represents a good preliminary step in establishing a local scale ecosystem services valuation framework for urban areas in a tropical climate, but additional refinements to the indicator determinations are needed.




Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Akhter, M. S., & Hewa, G. A. (2016). The use of PCSWMM for assessing the impacts of land use changes on hydrological responses and performance of WSUD in managing the impacts at Myponga catchment, South Australia. Water, 8(11), 511.https://doi.org/10.3390/w8110511

Akter, A., & Alam, M. T. (2019, November). Urban flood hazard modeling and mapping using PCSWMM. In International conference on sustainable infrastructure 2019: Leading resilient communities through the 21st Century (pp. 57-68). American Society of Civil Engineers. https://doi.org/10.1061/9780784482650.007

Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., Ott, E., & Schröter, B. (2021). Planning nature-based solutions: Principles, steps, and insights. Ambio, 50(8), 1446-1461.

Ali, A., & Yan, E. R. (2017). Relationships between biodiversity and carbon stocks in forest ecosystems: A systematic literature review. Tropical Ecology, 58(1).

Arunyawat, S., & Shrestha, R. P. (2016). Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability, 8(8), 768. https://doi.org/10.3390/su8080768

Asanok, L., Kamyo, T., Norsaengsri, M., Salinla-um, P., Rodrungruang, K., Karnasuta, N., Navakam, S., Pattanakiat, S., Morod, D., Duengkae, P., & Kutintara, U. (2017). Vegetation community and factors that affect the woody species composition of riparian forests growing in an urbanizing landscape along the Chao Phraya River, Central Thailand. Urban Forestry & Urban Greening, 28, 138-149.

Beganskas, S., Ryan, R. J., Walters, E., Soro, M., Cushman, E., & Toran, L. (2021). Coupling PCSWMM and WASP to evaluate green stormwater infrastructure impacts to storm sediment loads in an urban watershed. JAWRA Journal of the American Water Resources Association, 57(1), 134-153.

Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R) USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22(11), 6059-6086

Benra, F., De Frutos, A., Gaglio, M., Álvarez-Garretón, C., Felipe-Lucia, M., & Bonn, A. (2021). Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling & Software, 138, 104982.

Beza, B. B., Zeunert, J., & Hanson, F. (2019). The role of WSUD in contributing to sustainable urban settings. In Approaches to water sensitive urban design (pp. 367-380). Woodhead Publishing.

Breger, B. (2020). Understanding agrihoods: An exploration into the growing trend of farm-to-table communities across the United States. [Master’s thesis, University of Massachusetts Amherst]. https://scholarworks.umass.edu/masters_theses_2/934/

Brunbjerg, A. K., Bruun, H. H., Dalby, L., Fløjgaard, C., Frøslev, T. G., Høye, T. T., Goldberg, I., Læssøe, T., Hansen, M.D.D., Brøndum, L., Skipper, L., Fog, K., & Ejrnæs, R. (2018). Vascular plant species richness and bioindication predict multi-taxon species richness. Methods in Ecology and Evolution, 9(12), 2372-2382.

Büscher, M. (2006). Vision in motion. Environment and Planning A, 38(2), 281-299.

Caneva, G., Cicinelli, E., Scolastri, A., & Bartoli, F. (2020). Guidelines for urban community gardening: Proposal of preliminary indicators for several ecosystem services (Rome, Italy). Urban Forestry & Urban Greening, 56, 126866. https://doi.org/10.1016/j.ufug.2020.126866

Caro, C., Marques, J. C., Cunha, P. P., & Teixeira, Z. (2020). Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecological Indicators, 115, 106426. https://doi.org/10.1016/j.ecolind.2020.106426

Chaosakul, T., Wijekoon, K. C., Kijjanapanich, P., Udom, T., Siripong, C., Dang, N. H., Sin, D.K., Samantarat, N., Koottate, T., Irvine, K.N., Zumfelde, J., & Bakert, J. (2010). Modeling a peri-urban combined sewer system to assess drainage improvements: A case study of Rattanakosin Village, Thailand. Southeast Asian Water Environment, 4, 193.

Chitwatkulsiri, D., Miyamoto, H., Irvine, K. N., Pilailar, S., & Loc, H. H. (2022). Development and application of a real-time flood forecasting system (RTFlood System) in a tropical urban area: A case study of Ramkhamhaeng Polder, Bangkok, Thailand. Water, 14(10), 1641. MDPI AG. http://dx.doi.org/10.3390/w14101641

Cilliers, E. J., & Timmermans, W. (2014). The importance of creative participatory planning in the public place-making process. Environment and Planning B: Planning and Design, 41(3), 413-429.

Clark, B. (2003). Ebenezer Howard and the marriage of town and country: An introduction to Howard’s Garden Cities of To-morrow (Selections). Organization & Environment, 16(1), 87-97.

Clucas, B., Parker, I. D., & Feldpausch-Parker, A. M. (2018). A systematic review of the relationship between urban agriculture and biodiversity. Urban Ecosystems, 21(4), 635-643.

Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C.R., Renaud, F.G., Welling, R., & Walters, G. (2019). Core principles for successfully implementing and upscaling nature-based solutions. Environmental Science & Policy, 98, 20-29.

Cong, W., Sun, X., Guo, H., & Shan, R. (2020). Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112, 106089. https://doi.org/10.1016/j.ecolind.2020.106089.

Cooper, L. M., & Sheate, W. R. (2002). Cumulative effects assessment: A review of UK environmental impact statements. Environmental Impact Assessment Review, 22(4), 415-439.

Corrigan, M. P. (2011). Growing what you eat: Developing community gardens in Baltimore, Maryland. Applied Geography, 31(4), 1232-1241.

Cox, M., Arnold, G., & Tomás, S. V. (2010). A review of design principles for community-based natural resource management. Ecology and Society, 15(4).

Croci, E., Lucchitta, B., & Penati, T. (2021). Valuing ecosystem services at the urban level: A critical review. Sustainability, 13(3), 1129. https://doi.org/10.3390/su13031129

Croeser, T., Garrard, G., Sharma, R., Ossola, A., & Bekessy, S. (2021). Choosing the right nature-based solutions to meet diverse urban challenges. Urban Forestry & Urban Greening, 65, 127337. https://doi.org/10.1016/j.ufug.2021.127337

Daniel, T. C. (2001). Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape and Urban Planning, 54(1-4), 267-281.

Ebissa, G., & Desta, H. (2022). Review of urban agriculture as a strategy for building a water resilient city. City and Environment Interactions, 100081. https://doi.org/10.1016/j.cacint.2022.100081

Ferreira, C.S.S., Mourato, S., Kasanin-Grubin, M., JD Ferreira, A., Destouni, G., & Kalantari, Z. (2020). Effectiveness of nature-based solutions in mitigating flood hazard in a Mediterranean peri-urban catchment. Water, 12(10), 2893. https://doi.org/10.3390/w12102893

Ferreira, V., Barreira, A. P., Loures, L., Antunes, D., & Panagopoulos, T. (2020). Stakeholders’ engagement on nature-based solutions: A systematic literature review. Sustainability, 12(2), 640. https://doi.org/10.3390/su12020640

Ferris, R., & Humphrey, J. W. (1999). A review of potential biodiversity indicators for application in British forests. Forestry, 72(4), 313-328.

Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Davies, A.S., Bertrand-Krajewski, J-L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.

Frantzeskaki, N. (2019). Seven lessons for planning nature-based solutions in cities. Environmental Science & Policy, 93, 101-111.

Gioia, P., & Pigott, J. P. (2000). Biodiversity assessment: A case study in predicting richness from the potential distributions of plant species in the forests of south-western Australia. Journal of Biogeography, 27(5), 1065-1078.

Goncalves, M. L., Zischg, J., Rau, S., Sitzmann, M., Rauch, W., & Kleidorfer, M. (2018). Modeling the effects of introducing low impact development in a tropical city: A case study from Joinville, Brazil. Sustainability, 10(3), 728. https://doi.org/10.3390/su10030728

Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391.

Hamel, P., & Tan, L. (2022). Blue–green infrastructure for flood and water quality management in Southeast Asia: Evidence and knowledge gaps. Environmental Management, 69, 699–718.

Hamel, P., Guerry, A. D., Polasky, S., HaHoghooghin, B., Douglass, J. A., Hamann, M., Janke, B., Kuiper, J.J., Levrel, H., Liu, H., Lonsdorf, E., McDonald, R.I., Nootenboom, C., Ouyang, Z., Remme, R.P., Sharp, R.P., Tardieu, L., Viguie, V., Xu, D.,...Daily, G. C. (2021). Mapping the benefits of nature in cities with the InVEST software. npj Urban Sustainability, 1(1), 1-9. https://doi.org/10.1038/s42949-021-00027-9

Harrington, L. M. B. (2018). Alternative and virtual rurality: Agriculture and the countryside as embodied in American imagination. Geographical Review, 108(2), 250-273.

Hauser, R. J. (2019). Agrihoods: The sustainable communties of the future. Cal Poly Tech Digital Commons. https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1301&context=cmsp

Heyes, S., & Saniga, A. (2014). Sensing a remote coastal landscape: How an aboriginal culture camp experience informed conceptual design thinking of public spaces in Australia. PAN: Philosophy Activism Nature, (11), 48-62.

Ho, H. L., Babel, M. S., Weesakul, S., Irvine, K. N., & Pham, M. D. (2015). Exploratory assessment of SUDS feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh City, Vietnam. British Journal of Environment and Climate Change, 5(2), 91-103. http://dx.doi.org/10.9734/BJECC/2015/11534

Hoghooghi, N., Golden, H.E., Bledsoe, B.P., Barnhart, B.L., Brookes, A., Djang, K., Halama, J.J., McKane, R.B., Nietch, C.T., & Pettus, P.B. (2018). Cumulative effects of low impact development on watershed hydrology in a mixed land-cover system. Water, 10(8), 991.

Howett, C. (1998). Ecological values in twentieth-century landscape design: A history and hermeneutics. Landscape Journal, 17, 80-98.

Htun, T., Irvine, K. N., & Jindal, R. (2016). Mathematical modelling of wastewater collection system in Cha-am municipality using PCSWMM. International Journal of Advances in Agricultural and Environmental Engineering, 3(2): 409-413.

Irvine, K. N., & Chua, H. C. L. (2016). Modeling stormwater runoff from an urban park, Singapore using PCSWWM. Journal of Water Management Modeling, 25:C410. https://doi.org/10.14796/JWMM.C410

Irvine, K. N., Drake, J. J., & James, W. (1990). A dynamic, physically-based method for estimating erosion of pervious urban land. Canadian Water Resources Journal, 15(4), 303-318.

Irvine, K., Sovann, C., Suthipong, S., Kok, S., & Chea, E. (2015). Application of PCSWMM to assess wastewater treatment and urban flooding scenarios in Phnom Penh, Cambodia: A tool to support eco-city planning. Journal of Water Management Modeling. C389. https://doi.org/10.14796/JWMM.C389

Irvine, K., Loc, H. H. J., Sovann, C., Suwanarit, A., Likitswat, F., Jindal, R., Koottatep, T., Gaut, J., Chua, L., Qi, L.W., & De Wandeler, K. (2021). Bridging the form and function gap in urban green space design through environmental systems modeling. Journal of Water Management Modeling, 29: C476. https://doi.org/10.14796/JWMM.C476

Irvine, K. N., Chua, L.H.C., Zhang, H., Qi, L.E., & Lim, Y.X. (2022a). Nature-based solutions to manage particle-bound metals in urban stormwater runoff: Current design practices and knowledge gaps. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-022-03365-y

Irvine, K. N., Suwanarit, A., Likitswat, F., Srilertchaipanij, H., Ingegno, M., Kaewlai, P., Boonkam, P., Tontisirin, N., Sahavacharin, A., Wongwatcharapaiboon, J., & Janpathompong, S. (2022b). Smart city Thailand: Visioning and design to enhance sustainability, resiliency, and community wellbeing. Urban Science, 6(1), 7. https://doi.org/10.3390/urbansci6010007

Irvine, K., Likitswat, F., Suwanarit, A., & Koottatep, T. (2022c). A multidisciplinary approach to authentic learning experiences for nature-based solutions design: Broadening the monkey cheeks. Australasian Journal of Engineering Education, 1-17, https://doi.org/10.1080/22054952.2022.2083789

Kalinauskas, M., Mikša, K., Inácio, M., Gomes, E., & Pereira, P. (2021). Mapping and assessment of landscape aesthetic quality in Lithuania. Journal of Environmental Management, 286, 112239. https://doi.org/10.1016/j.jenvman.2021.112239

Kamo, K., Vacharangkura, T., Tiyanon, S., Viriyabuncha, C., Nimpila, S., & Doangsrisen, B. (2002). Plant species diversity in tropical planted forests and implication for restoration of forest ecosystems in Sakaerat, Northeastern Thailand. Japan Agricultural Research Quarterly: JARQ, 36(2), 111-118.

Keeley, M., & Benton-Short, L. (2018). Urban sustainability in the US: Cities take action. Springer. https://doi.org/10.1007/978-3-319-93296-5

Klinmalai, S., & Kanki, K. (2013, October). Neighborhood relationship measurement between newcomer and former inhabitants in sprawl areas of Bangkok Metropolitan Region: The case of Nonthaburi and Pathumthani province, Thailand. In Proceedings of the 49th ISOCARP Congress, Brisbane, Australia (pp. 1-4). http://www.isocarp.net/Data/case_studies/2285.pdf

Koottatep, T., Surinkul, N., Polprasert, C., Kamal, A. S. M., Koné, D., Montangero, A., Heinss, U., & Strauss, M. (2005). Treatment of septage in constructed wetlands in tropical climate: Lessons learnt from seven years of operation. Water Science and Technology, 51(9), 119-126.

Koottatep, T., Pussayanavin, T., Khamyai, S., & Polprasert, C. (2021). Performance of novel constructed wetlands for treating solar septic tank effluent. Science of The Total Environment, 754, 142447. https://doi.org/10.1016/j.scitotenv.2020.142447

Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., Basu, B., Basu, A.S., Bowyer, P., Charizopoulos, N., Gallotti, G., Jaakko, J., Leo., L.S., Loupis, M., Menenti, M., Mickovski, S.B., Mun, S-J., Gonzalez-Ollauri, A., Pfeiffer, j.,...Zieher, T. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Science of the Total Environment, 784, 147058. https://doi.org/10.1016/j.scitotenv.2021.147058

Lashford, C., Rubinato, M., Cai, Y., Hou, J., Abolfathi, S., Coupe, S., Charlesworth, S., & Tait, S. (2019). SuDS & sponge cities: A comparative analysis of the implementation of pluvial flood management in the UK and China. Sustainability, 11(1), 213. https://doi.org/10.3390/su11010213

Le, S. H., Chua, L. H., Irvine, K. N., & Eikaas, H. S. (2017). Modeling washoff of total suspended solids in the tropics. Journal of Environmental Management, 200, 263-274.

LeCompte, M. D., Schensul, J. J., Singer, M., Trotter, R. T., & Cromley, E. K. (1999). Mapping social networks, spatial data, and hidden populations. Rowman Altamira.

Lenzholzer, S., Duchhart, I., & Koh, J. (2013). ‘Research through designing’ in landscape architecture. Landscape and Urban Planning, 113, 120-127.

Li, L., Cheshmehzangi, A., Chan, F. K. S., & Ives, C. D. (2021). Mapping the research landscape of nature-based solutions in urbanism. Sustainability, 13(7), 3876. https://doi.org/10.3390/su13073876

Likitswat, F., & Sahavacharin, A. (2023). Landscape change analysis: Ecosystem services in the peri-urban agriculture of Bangkok. Journal of Architectural/Planning Research and Studies (JARS), 20(2), 25-38.

Loc, H. H., Irvine, K. N., Suwanarit, A., Vallikul, P., Likitswat, F., Sahavacharin, A., Sovann, C., & Le Ha, S. (2020). Mainstreaming ecosystem services as public policy in South East Asia, from theory to practice. In Mauerhofer, V., Rupo, D., & Tarquinio, L. (Eds), Sustainability and law (pp. 631-665). Springer, Cham.

Lovell, R., Husk, K., Bethel, A., & Garside, R. (2014). What are the health and well-being impacts of community gardening for adults and children: A mixed method systematic review protocol. Environmental Evidence, 3(1), 1-13.

Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., & Gersberg, R. M. (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18(2), 157-171.

Lüke, A., & Hack, J. (2018). Comparing the applicability of commonly used hydrological ecosystem services models for integrated decision-support. Sustainability, 10(2), 346. https://doi.org/10.3390/su10020346

Makhzoumi, J., & Al-Sabbagh, S. (2018). Landscape and urban governance: Participatory planning of the public realm in Saida, Lebanon. Land, 7(2), 48. https://doi.org/10.3390/land7020048

Martín, E. G., Giordano, R., Pagano, A., van der Keur, P., & Costa, M. M. (2020). Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Science of the Total Environment, 738, 139693. https://doi.org/10.1016/j.scitotenv.2020.139693

Marvin, J., & Wilson, A. T. (2016). One dimensional, two dimensional and three dimensional hydrodynamic modeling of a dyked coastal river in the Bay of Fundy. Journal of Water Management Modeling. 25:C404. https//doi.org/10.14796/JWMM.C404

McGuire, L., Morris, S. L., & Pollard, T. M. (2022). Community gardening and wellbeing: The understandings of organisers and their implications for gardening for health. Health & Place, 75, 102773. https://doi.org/10.1016/j.healthplace.2022.102773

McHarg, I. L., & Mumford, L. (1969). Design with nature. American Museum of Natural History.

Millennium Ecosystem Assessment. (2005). Ecosystems and human wellbeing: Synthesis. Island Press.

Moosavi, S., Browne, G. R., & Bush, J. (2021). Perceptions of nature-based solutions for urban water challenges: Insights from Australian researchers and practitioners. Urban Forestry & Urban Greening, 57, 126937. https://doi.org/10.1016/j.ufug.2020.126937

Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/10.3390/w10111536

Murphy, M. D. (2016). Design thinking. In Landscape architecture theory (pp. 263-277). Island Press.

Nasrin, T., Sharma, A. K., & Muttil, N. (2017). Impact of short duration intense rainfall events on sanitary sewer network performance. Water, 9(3), 225. https://doi.org/10.3390/w9030225

Nijhuis, S., & de Vries, J. (2019). Design as research in landscape architecture. Landscape Journal, 38(1-2), 87-103.

Paule-Mercado, M. A., Lee, B. Y., Memon, S. A., Umer, S. R., Salim, I., & Lee, C. H. (2017). Influence of land development on stormwater runoff from a mixed land use and land cover catchment. Science of the Total Environment, 599, 2142-2155. https://doi.org/10.1016/j.scitotenv.2017.05.081

Pilotti, M., Barone, L., Balistrocchi, M., Valerio, G., Milanesi, L., & Nizzoli, D. (2021). Nutrient delivery efficiency of a combined sewer along a lake challenged by incipient eutrophication. Water Research, 190, 116727. https://doi.org/10.1016/j.watres.2020.116727

Polat, A. T., & Akay, A. (2015). Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban Forestry & Urban Greening, 14(3), 573-582.

Ponce, V. M. (1989). Engineering hydrology: Principles and practices. Prentice Hall.

Porter, C. M. (2018). What gardens grow: Outcomes from home and community gardens supported by community-based food justice organizations. Journal of Agriculture, Food Systems, and Community Development, 8(Suppl 1), 187. https://doi.org/10.5304/jafscd.2018.08A.002

Raaphorst, K., Duchhart, I., Van Der Knaap, W., Roeleveld, G., & Van Den Brink, A. (2017). The semiotics of landscape design communication: Towards a critical visual research approach in landscape architecture. Landscape Research, 42(1), 120-133.

Raaphorst, K., van der Knaap, W., van den Brink, A., & Roeleveld, G. (2019). Visualization, participation and rhetoric: The discursive power of landscape design representations in participatory processes. Journal of Landscape Architecture, 14(2), 42-53.

Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., Geneletti, D., & Calfapietra, C. (2017a). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environmental Science & Policy, 77, 15-24.

Raymond, C. M., Breil, M., Nita, M. R., Kabisch, N., de Bel, M., Enzi, V., Frantzeskaki, N., Geneletti, D., Cardinaletti, M., Lovinger, L., Basnou, C., Monteiro, A., Robrecht, H., Sgrigna, G., Munari., L., Calfapietra, C., & Berry, P. (2017b). An impact evaluation framework to support planning and evaluation of nature-based solutions projects. Report prepared by the EKLIPSE expert working group on nature-based solutions to promote climate resilience in urban areas. Centre for Ecology and Hydrology.

Romero, C. C., & Dukes, M. D. (2009). Turfgrass and ornamental plant evapotranspiration and crop coefficient Literature Review. Agricultural and Biological Engineering Department University of Florida. https://abe.ufl.edu/faculty/mdukes/pdf/irrigation-efficiency/Romero_Dukes_Turfgrass%20ET_Crop_%20Coefficient_%20Lit.pdf

Roseland, M. (1997). Dimensions of the eco-city. Cities, 14(4), 197-202.

Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M., McClain, M. & Lopez-Gunn, E. (2020). Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Natural Hazards and Earth System Sciences, 20(1), 243-270.

Sailor, D. J. (1995). Simulated urban climate response to modifications in surface albedo and vegetative cover. Journal of Applied Meteorology and Climatology, 34(7), 1694-1704.

Salata, S., Garnero, G., Barbieri, C. A., & Giaimo, C. (2017). The integration of ecosystem services in planning: An evaluation of the nutrient retention model using InVEST software. Land, 6(3), 48. https://doi.org/10.3390/land6030048

Saurav, K. C., Shrestha, S., Ninsawat, S., & Chonwattana, S. (2021). Predicting flood events in Kathmandu Metropolitan City under climate change and urbanisation. Journal of Environmental Management, 281, 111894. https://doi.org/10.1016/j.jenvman.2020.111894

Seitz, N. E., Westbrook, C. J., & Noble, B. F. (2011). Bringing science into river systems cumulative effects assessment practice. Environmental Impact Assessment Review, 31(3), 172-179.

Shrestha, A., Chaosakul, T. A., Priyankara, D. P., Chuyen, L. H., Myat, S. S., Syne, N. K., Irvine, K., Koottatep, T., & Babel, M. S. (2014). Application of PCSWMM to explore possible climate change impacts on surface flooding in a Peri-urban area of Pathumthani, Thailand. Journal of Water Management Modeling. C377. https://www.chijournal.org/Journals/PDF/C377

Sidek, L. M., Chua, L. H. C., Azizi, A. S. M., Basri, H., Jaafar, A. S., & Moon, W. C. (2021). Application of PCSWMM for the 1-D and 1-D–2-D modeling of urban flooding in Damansara Catchment, Malaysia. Applied Sciences, 11(19), 9300. https://doi.org/10.3390/app11199300

Sim, C. H., Yusoff, M. K., Shutes, B., Ho, S. C., & Mansor, M. (2008). Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia. Journal of Environmental Management, 88(2), 307-317.

Simaika, J. P., & Samways, M. J. (2009). An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodiversity and Conservation, 18(5), 1171-1185.

Song, Y., Kirkwood, N., Maksimović, Č., Zheng, X., O’Connor, D., Jin, Y., & Hou, D. (2019). Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Science of the Total Environment, 663, 568-579.

Sonti, N. F., & Svendsen, E. S. (2018). Why garden? Personal and abiding motivations for community gardening in New York City. Society & Natural Resources, 31(10), 1189-1205.

Sowińska-Świerkosz, B., & García, J. (2021). A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Science of the Total Environment, 787, 147615. https://doi.org/10.1016/j.scitotenv.2021.147615

Spruce, J. (2021). Reflections on a project based approach to work related learning in spatial design. Design Principles and Practices. International Journal of Design Education, 15(1). https://doi.org/10.18848/2325-128X/CGP/v15i01/101-117

Swapan, M. S. H. (2016). Who participates and who doesn’t? Adapting community participation model for developing countries. Cities, 53, 70-77.

Tan, T. H. (2012). Meeting first-time buyers’ housing needs and preferences in greater Kuala Lumpur. Cities, 29(6), 389-396.

Tantiyaswasdikul, K. (2019). A framework for design thinking outside the design profession: An analysis of design thinking implementations. Journal of Architectural/Planning Research and Studies (JARS), 16(1), 45-68.

Teang, L., Wongwatcharapaiboon, J., Irvine, K. N., Jamieson, I., & Rinchumphu, D. (2021, June). Modelling the impact of water sensitive urban design on pluvial flood management in a tropical climate. In Proceedings of the 12th built environment research associates conference, BERAC2021, Bangkok, Thailand (pp. 350-359). Faculty of Architecture and Planning, Thammasat University.

Thornbush, M. (2015). Urban agriculture in the transition to low carbon cities through urban greening. AIMS Environmental Science, 2(3), 852-867.

Tsuchiya, K., Hara, Y., & Thaitakoo, D. (2015). Linking food and land systems for sustainable peri-urban agriculture in Bangkok Metropolitan Region. Landscape and Urban Planning, 143, 192-204.

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1-3), 48-65.

Wickenberg, B., McCormick, K., & Olsson, J. A. (2021). Advancing the implementation of nature-based solutions in cities: A review of frameworks. Environmental Science & Policy, 125, 44-53.

WinklerPrins, A. M. (2002). House-lot gardens in Santarém, Pará, Brazil: Linking rural with urban. Urban Ecosystems, 6(1), 43-65.

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.

Wright, A. J., Barry, K. E., Lortie, C. J., & Callaway, R. M. (2021). Biodiversity and ecosystem functioning: Have our experiments and indices been underestimating the role of facilitation? Journal of Ecology, 109(5), 1962-1968.

Wu, B. S., Ruangpan, L., Sanchez, A., Rasmussen, M., Rene, E. R., & Vojinovic, Z. (2021). Environmental design features for large-scale nature-based solutions: Development of a framework that incorporates landscape dynamics into the design of nature-based solutions. Sustainability, 13(11), 6123. https://doi.org/10.3390/su13116123

Wu, J., Lin, W., Peng, X., & Liu, W. (2013). A review of forest resources and forest biodiversity evaluation system in China. International Journal of Forestry Research, 2013. https://doi.org/10.1155/2013/396345

Wulfkuhle, M. (2022). Creating agrihoods: Exploring hybrid agriculture focused residential development [Master’s thesis, Kansas State University].

Zasada, I., Weltin, M., Zoll, F., & Benninger, S. L. (2020). Home gardening practice in Pune (India), the role of communities, urban environment and the contribution to urban sustainability. Urban Ecosystems, 23(2), 403-417.