Passive Design for Thermal Comfort in Hot Humid Climates

Main Article Content

Torwong Chenvidyakarn


Passive design can be referred to a way of designing buildings that takes advantage of the prevailing
climate and natural energy resources, such as daylight, wind and thermal buoyancy, to achieve a comfortable
environment while minimising energy use and reliance on mechanical systems. This paper reviews a selection
of work on key issues which are inherent to passive design for thermal comfort in hot humid climates,
namely the comfort zone, the minimisation of cooling needs and techniques for cooling and dehumidification.
Directions for future research are also discussed. The review highlights the need for acquiring generic
design and control principles, which will help maximise the potential of various passive design techniques
for providing thermal comfort in hot humid climates, and which will also complement the knowledge already
gained from case studies and fieldwork carried out in the areas. Furthermore, continuous research and
development, both technical and commercial, are required to develop high-potential passive climate control
techniques to become viable alternatives to mechanical solutions.


Download data is not yet available.

Article Details

Review Article


Department of Trade and Industry (DTI). (2003). Renewables innovation review. Retrieved May 1, 2007, from

U.S. Environmental Protection Agency (EPA). (2004). Buildings and the environment: A statistical summary. Retrieved September 1, 2007, from

Building Research Establishment, Sustainable Construction Unit (BRESCU). (2000). Energy consumption guide 19: Energy use in offices. Watford, UK: Energy Efficient Best Practice Programme, BRE.

Baker, N. V., & Steemers, K. (2000). Energy and environment in architecture: A technical design guide. London: E & FN Spon.

Givoni, B. (1994). Passive and low energy cooling of buildings. New York: John Wiley & Sons.

Linden, P. (1999). The fluid mechanics of natural ventilation. Annual Review of Fluid Mechanics, 31, 201-238.

Allard, F. (Ed.). (1998). Natural ventilation in buildings: A design handbook. London: James & James.

Ghiaus, C., & Allard, F. (Eds.). (2005). Natural ventilation in the urban environment. London: Earthscan.

Fanger, P. O. (1970). Thermal comfort, analysis and application in environment engineering. Copenhagen, Denmark: Danish Technical Press.

Auliciems, A. (1981). Towards a psycho-physiological model of thermal perceptions. International Journal of Biochemistry, 25, 109-122.

Humphreys, M. (1978). Outdoor temperatures and comfort indoors. Building Research & Practice, 6(2), 92-105.

Szokolay, S. V. (2004). Introduction to architectural science: The basis of sustainable design. Oxford, UK: Architectural Press.

Zhang, G., Zheng, C., Yang, W., Zhang, Q., & Moschandreas, D. J. (2007). Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor and Built Environment, 16(2), 148-158.

Wong, N. H., Feriadi, H., Lim, P. Y., Tham, K. W., Sekhar, C., & Cheong, K. W. (2002). Thermal comfort evaluation of naturally ventilated public housing in Singapore. Building and Environment, 37, 1267-1277.

* Jitkhajornwanich, K. (2006). สภาวะสบาย และการปรับตัวเพื่ออยู่แบบสบายของคนในท้องถิ่น [Thermal comfort and adaptation for thermal comfort of local populations]. The 2006 National Research Council of Thailand Award. Bangkok, Thailand, 117-120.

Khedari, J., Yamtraipat, N., Pratintong, N., & Hirunlabh, J. (2000). Thailand ventilation comfort chart. Energy and Buildings, 32, 245-249.

Mallick, F. H. (1996). Thermal comfort and building design in the tropical climates. Energy and Buildings, 23, 161-167.

Srivajana, W. (2003). Effects of air velocity on thermal comfort in hot and humid climates. Thammasat International Journal of Science and Technology, 8(2), 45-54.

Hwang, R. L., Lin, T. P., & Kuo, N. J. (2006). Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, 38, 53-62.

Kwok, A. G. (1998). Thermal comfort in tropical classrooms. ASHRAE Transactions, 104, 1031-1047.

Wong, N. H., & Khoo, S. S. (2003). Thermal comfort in classrooms in the tropics. Energy and Buildings, 35, 337-351.

de Dear, R. J., Leow, K. G., & Foo, S. C. (1991). Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology, 34, 259-265.

Busch, J. (1990). Thermal responses to the Thai office environment. ASHRAE Transactions, 96(1), 859-872.

Busch, J. (1992). A tale of two populations: Thermal comfort in air-conditioned and naturally ventilated offices in Thailand. Energy and Buildings, 18, 235-249.

de Dear, R. J., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1a), 145-167.

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). (1995). ASHRAE standard 55-1992, addenda 1995: Thermal environmental conditions for human occupancy, including ANSI/ASHRAE addendum 55a-1995. Atlanta, GA: American Society of Heating, Refrigerating, and AirConditioning Engineers.

Feriadi, H., & Wong, N. H. (2004). Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, 36, 614-626.

International Standards Organisation (ISO). (2005). ISO 7730: 2005 Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva, Switzerland: International Standards Organisation.

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). (2004). ANSI/ ASHRAE standard 55-2004: Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). A standard predictive index of human response to the thermal environment. ASHRAE Transactions, 66(2), 709-731.

Olgyay, V. (1953). Bioclimatic approach to architecture (Building Research Advisory Board, Conference Report No. 5). Washington, DC: National Research Council.

Wongfun, S., Chindavanig, T., & Sreshthaputra, A. (2006). แนวทางการใช้รูปแบบการไหลเวียนกระแสลมของ เรือนไทยในบ้านพักอาศัย [Guidelines for utilization of natural air flow pattern of traditional Thai house in residence]. Journal of Energy Research, 3, 31-50.

Leaurungreong, V., Oranratmanee, R., Sihalarth, P., & Insisiengmay, S. (2005). ภูมิปัญญาพื้นถิ่นทาง สถาปัตยกรรมเพื่อความสบายในอาคารพักอาศัยของเชียงใหม่และหลวงพระบาง [The local intelligence for a dwellings comfort living in Chiang Mai & Luang Prabang]. Journal of Energy Research, 2, 17-38.

Tantasavasdi, C., Jareemit, D., Suwanchaiskul, A., & Naklada, T. (2007). Natural ventilation: Evaluation and design of houses in Thailand. Proceedings of the 3 Conference on Energy Network of Thailand [CD-ROM]. Bangkok, Thailand.

Tantasavasdi, C. (2002). การคำนวณพลศาสตร์ของไหลเพื่อการออกแบบโดยวิธีธรรมชาติ: แนวทางสำหรับบ้านใน ประเทศไทย [CFD approach towards natural ventilation design: Guidelines for houses in Thailand]. Journal of Architectural Research and Studies, 1, 45-63.

Tantasavasdi, C., Srebric, J., & Chen, Q. (2001). Natural ventilation design for houses in Thailand. Energy and Buildings, 33, 815-824.

Murakami, S., Kato, S., Ooka, R., & Shiraishi, Y. (2004). Design of a porous-type residential building model with low environmental load in hot and humid Asia. Energy and Buildings, 36, 1181-1189.

Wang, L., & Wong, N. H. (2007). The impacts of ventilation strategies and facade on indoor thermal environment for naturally ventilated residential buildings in Singapore. Building and Environment, 42, 4006-4015.

Tantasavasdi, C., & Jareemit, D. (2005). การระบายอากาศโดยวิธีธรรมชาติ: แนวทางการออกแบบผังอาคาร ชุ ดพักอาศัยประเภทอาคารสูง [Natural ventilation: Planning design guidelines for residential high-rises]. Journal of Architectural/Planning Research and Studies, 3, 23-36.

* Srisuwan, M. (2001). การศึกษาและวิเคราะห์ทิศทางกระแสลมที่สัมพันธ์กับทิศทางอาคาร การหมุนเวียนของกระแสลม และการระบายอากาศสำหรับโครงการมหาวิทยาลัยเขียวสะอาด วิทยาเขตสารสนเทศ เพชรบุรี [Analysis of relationships between wind direction, building orientation and ventilation at green and clean university project Phetchaburi Information Technology Campus]. Sarasatr, 5, 145-158.

Laopanitchakul, V., Sunakorn, P., & Srisutapan, A. (2007). Climbing-plants on solid wall reducing energy in tropical climate. In S. W. Shin, & H. W. Lee (Eds.), Proceedings of the International Conference on Sustainable Building Asia, SB07 Seoul (pp. 271-278). Seoul, Korea: Korean Green Building Council (KGBC).

Luxmoore, D. A., Jayasinghe, M. T. R., & Mahendran, M. (2005). Mitigating temperature increases in high lot density sub-tropical residential developments. Energy and Building, 37, 1212-1224.

Meng, Q., & Zhang, L. (2006). The rooftop shading system of the Humanities Building at SCUT. Energy and Buildings, 38, 1356-1359.

Mingozzi, A., & Bottiglioni, S. (2005). Logical use of traditional technologies for housing passive cooling in hot humid Italian climate areas. Proceedings of International Conference: Passive and Low Energy Cooling for the Built Environment. Santorini, Greece, 579-584.

* Wimolwattewee, A., Chindavanig, T., & Sreshthaputra, A. (2006). แนวทางการออกแบบปรับปรุงบ้านเอื้ออาทร เพื่อสภาวะน่าสบายและการใช้พลังงานอย่างมีประสิทธิภาพ [Design guidelines for improving thermal comfort and energy efficiency of Baan Ua-Arthorn]. Journal of Energy Research, 3, 51-88.

Suriyothin, P. (2002). Climatic design for energy efficient house in Thailand: Case study of a prototype house for four regions. Sarasatr, 5, 129-164.

Garde, F., Mara, T., Lauret, A. P., Boyer, H., & Celaire, R. (2001). Bringing simulation to implementation: Presentation of a global approach in the design of passive solar buildings under humid tropical climates. Solar Energy, 71(2) 109-120.

Sumanon, R. (2004). ลักษณะเฉพาะของมุมเอียงหลังคาที่มีผลต่อความรู้สึกร้อนหนาวภายในเรือนไทย [The unique angle of roof slope effecting thermal comfort in the traditional Thai house]. Sarasatr, 7, 193-218.

* Chukiatman, K. (1998). การใช้แสงธรรมชาติเสริมเพื่อลดพลังงานในอาคาร กรณีศึกษาอาคารในจุฬาลงกรณ์มหาวิทยาลัย [Natural lighting for reducing energy consumption: Case study of buildings at Chulalongkorn University]. Sarasatr, 2, 66-84.

* U-Sanno, K. (1997). รูปแบบอุปกรณ์บังแดดที่เหมาะสมสำหรับห้องเรียน [Appropriate shading devices for classrooms]. Sarasatr, 1, 140-155.

Srivirote, S. (2004). ผลกระทบของความร้อนที่เกิดจากการนำแสงธรรมชาติมาใช้ในอาคาร โดยผ่านช่องแสงกระจก ด้านข้าง [The effect of heat transmittance from utilization of daylighting in buildings through sideglazings]. Journal of Energy Research, 1, 36-79.

* Simcharoen, P., & Pikultong, P. (2006). คุณสมบัติทางความร้อนและการดูดซึมความชื้นของวัสดุก่อสร้าง [Thermal and moisture absorption properties of construction materials]. Journal of Energy Research, 3, 89-96.

Majed, M., & Al-Hazmy, M. M. (2006). Analysis of coupled natural convection-conduction effects on the heat transport through hollow building blocks. Energy and Buildings, 38, 515-521.

Boonnasa, S. (2006). การเปรียบเทียบอัตราการถ่ายเทความร้อนที่ผ่านผนังระหว่างอิฐ Block ธรรมดา และอิฐ Cool Block [Comparison of heat transfer through the wall made of the conventional concrete block and Cool Block]. Proceedings of the 2 Conference on Energy Network of Thailand. Nakhon Ratchasima, Thailand.

* Puthipiroj, P. (2007). การศึกษาประสิทธิผลในการลดความร้อนจากหลังคา โดยวิธีการระบายอากาศและการใช้ฉนวน กันความร้อน [Comparison of effectiveness of attic ventilation and insulation in reducing heat transfer through roof]. Journal of Energy Research, 4, 59-72.

Kanisthakhon, B. (2001). Optimal materials for hot and humid climate: A case study of a contemporary Thai house. Sarasatr, 4(2), 110-126.

Alvarado, J. L., & Martinez, E. (in press). Passive cooling of cement-based roofs in tropical climates. Energy and Buildings.

Thongkamsamut, C. (2005). การป้องกันความร้อนผ่านผนังก่ออิฐฉาบปูนสัมพันธ์กับการระบายอากาศ [A protection of heat flow through common brick wall related to natural ventilation]. Journal of Faculty of Architecture, Khon Kaen University, 4(1), 117-123.

Srisutapan, A. (1999). การปรับปรุงหลังคาเพื่อลดปริมาณการถ่ายเทความร้อน [Reduction of heat gain through roof modification]. Sarasatr, 2, 151-158.

Yimprayoon, C. (2004). การจำลองประสิทธิภาพการถ่ายเทความร้อน ของบ้านพักอาศัยระบบพึ่งพาธรรมชาติ ด้วยการ เลือกใช้วัสดุประกอบอาคารต่าง ๆ กรณีศึกษา: โครงการบ้านเอื้ออาทร [Passive residential building indoor thermal performance modeling using various building components. Case study: Baan Ua-Arthorn low-cost housing project]. Raneang, 4, 231-245.

Piriyasatta, P. (1999). ผลกระทบของสีผนัง และมวลสารภายในต่อการถ่ายเทความร้อนเข้าสู่อาคาร [Effects of wall colors and thermal mass to thermal conduction in building]. Sarasatr, 2, 174-192.

Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban space. The role of materials. Solar Energy, 77, 231-249.

Khamput, P., & Suweero, K. (2007). การเลือกวัสดุสำหรับใช้ออกแบบอิฐปูพื้นภายนอกอาคารเพื่อลดอุณหภูมิ [Selecting materials for design the exterior floor-covering blocks for reducing temperature]. Proceedings of the 3 Conference on Energy Network of Thailand [CD-ROM]. Bangkok, Thailand.

Givoni, B., & Hoffman, M. E., (1968). Effects of building materials on internal temperatures (Research report). Haifa: Technion Israel Institute of Technology, Research Station.

Pasilo, A., Hanchaiyungwa, N., & Teeboonma, U. (2007). การศึกษาสมบัติปาร์ติเกิลบอร์ดที่ทำจากฟางข้าว และแกลบ [A study of particle board properties manufactured from straw rise and rise husk]. Proceedings of the 3 Conference on Energy Network of Thailand [CD-ROM]. Bangkok, Thailand.

Leaurungreong, V. (2004). เทคโนโลยีหญ้าแฝกเพื่องานสถาปัตยกรรม [Vetiver grass technology for architecture]. Proceedings of the 1 Professional and Academic Collaborative Symposium. Bangkok: Council of Deans of Architecture Schools of Thailand, 235-242.

Pakunworakij, T., Puthipiroj, P., Oonjittichai, W., & Tisavipat, P. (2006). ประสิทธิภาพการป้องกันความร้อน ของฉนวนอาคารจากวัสดุเหลือใช้ทางการเกษตร [Thermal resistance efficiency of building insulation material from agricultural waste]. Journal of Architectural/Planning Research and Studies, 4(1), 2-13.

Khedari, J., Suttisonk, B., Pratinthong, N., & Hirunlabh, J. (2001). New lightweight composite construction materials with low thermal conductivity. Cement & Concrete Composites, 23, 65-70.

Khedari, J., Watsanasathaporn, P., & Hirunlabh, J. (2005). Development of fibre-based soil-cement block with low thermal conductivity. Cement & Concrete Composites, 27, 111-116.

Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21, 277-288.

Boonma, P., Phethuayluk, S., Waewsak, J., Klompong, N., & Sompech, S. (2005). สมบัติทางฟิสิกส์ บางประการของคอนกรีตบล็อกแบบกลวงที่ผสมเส้นใยกากปาล์มน้ำมันและผสมเส้นใยชานอ้อย [Some physical properties of hollow concrete block mixed with oil palm fibers and bagass fibers]. Proceedings of the 1 Conference on Energy Network of Thailand. Chon Buri, Thailand.

* Thongkamsamut, C. (2003). การพัฒนาผนังวัสดุธรรมชาติพื้นถิ่นเพื่อปรับปรุงสภาวะน่าสบายในอาคาร กรณีศึกษา อาคารเรียนไม่ปรับอากาศ ภาคตะวันออกเฉียงเหนือ ประเทศไทย [Development of walls from local materials for thermal comfort improvement: Case study of non air-conditioned schools in North-eastern Thailand]. Journal of the Faculty of Architecture, Khon Kaen University, 2(1), 39-48.

Chen, Y., & Wong, N. H. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105-120.

Parker, J. H. (1983). The effectiveness of vegetation on residential cooling. Passive Solar Journal, 123-132.

Parker, J. H. (1987). The use of shrubs in energy conservation plantings. Landscape Journal, 6, 132-129.

Parker J. H. (1989). The impact of vegetation on air conditioning consumption. Proceedings of Conference on Controlling the Summer Heat Island, LBL-27872. Berkeley, CA: Lawrence Berkeley Laboratory, 46-52.

Wong, N. H., Tan, P. Y., & Chen, Y. (2007). Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Building and Environment, 42, 25-54.

Nualsakul, N. (2004). การเปรียบเทียบศักยภาพของการป้องกันความร้อนระหว่างการใช้สวนหลังคากับระบบหลังคา ที่ใช้กันทั่วไป [A comparative study of thermal benefit between roof garden and conventional roof systems]. Sarasatr, 7, 219-234.

Wong, N. H., Chen, Y., Ong, C. L., & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Energy and Buildings, 38, 261-270.

Givoni, B. (1991). Performance and applicability of passive and low energy cooling systems, Energy and Buildings, 17, 177-199.

Tantakitti, C., & Jaturonglumlert, S. (2005). ผลของช่องเปิดอากาศโรงงานที่มีต่อค่าความสบายโดยการถ่ายเท อากาศแบบธรรมชาติ [Effect of factory openings on comfort by natural ventilation]. Journal of Energy Research, 2, 37-47.

Srisuwan, M. (2001). การศึกษาความสัมพันธ์ของทิศทางกระแสลมกับการเจาะช่องเปิดที่ผนังอาคาร สำหรับภูมิอากาศ ร้อนชื้นในประเทศไทย [The study of air flow patterns in relation to building wall opening for the tropical climate of Thailand]. Sarasatr, 4, 234-248.

Thanadsillapakul, C. (2005). แนวทางการออกแบบปล่องระบายอากาศสำหรับบ้านพักอาศัยในประเทศไทย [Stack ventilation design guidelines for houses in Thailand]. Journal of Energy Research, 2, 1-16.

Limmeechokchai, B., & Chungloo, S. (2007). Application of solar chimney and wetted roof in the test cell for natural ventilation and heat reduction in the hot and humid climate. Proceedings of the 3 Conference on Energy Network of Thailand [CD-ROM]. Bangkok, Thailand.

He, J., Okumura, A., Hoyano, A., & Asano, K. (2001). A solar cooling project for hot and humid climates. Solar Energy, 71, 135-145.

Chungloo, S., & Limmeechokchai, B. (2006). A numerical study of natural ventilation in buildingsutilized solar chimney and cool ceiling. Proceedings of the 2 Joint International Conference on Sustainable Energy and Environment. Bangkok, Thailand.

Khedari, J., Boonsri, B., & Hirunlabh, J. (2000). Ventilation impact of a solar chimney on indoor temperature fluctuation and air change in a school building. Energy and Buildings, 32, 89-93.

Bouchair, A. (1994). Solar chimney for promoting cooling ventilation in Southern Algeria. Building Services Engineering Research & Technology, 15(2), 81-93.

Spencer, S., Chen, Z. D., Li, Y., & Haghighat, F. (2000). Experimental investigation of a solar chimney natural ventilation system. Proceedings of 20 AIVC Conference: Ventilation Technologies. Edinburgh, UK, 813-818.

Harris, D. J., & Helwig, N. (2007). Solar chimney and building ventilation. Applied Energy, 84, 135-146.

Hamdy, I. F., & Fikry, M. A. (1998). Passive solar ventilation. Renewable Energy, 14, 381-386.

Chenvidyakarn, T., & Woods, A. W. (2004). Top-down pre-cooled natural ventilation. Building Services Engineering Research & Technology, 26(3), 1-14.

Lishman, B., & Woods, A. W. (2006). The control of naturally ventilated buildings subject to wind and buoyancy. Journal of Fluid Mechanics, 557, 451-472.

Hunt, G. R., & Linden, P. F. (2000). Multiple steady airflows and hysteresis when wind opposes buoyancy. Air Infiltration Review, 21, 1-3.

Hunt, G. R., & Linden, P. F. (2004). Displacement and mixing ventilation driven by opposing wind and buoyancy, Journal of Fluid Mechanics, 527, 27-55.

Sreshthaputra, A. (2003). Building design and operation for improving thermal comfort in naturally ventilation buildings in a hot-humid climate. Dissertation Abstracts International, 64(04), 1109A. (UMI No. 3088186)

Sreshthaputra, A., Haberl, J., & Andrews, M. J. (2004). Improving building design and operation of a Thai Buddhist temple. Energy and Buildings, 36, 481-494.

Shaviv, E., Yezioro, A., & Capeluto, I. G. (2001). Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy, 24, 445-452.

Fairy, P., & Vieira, R. (1984). Proposal for hybrid building cooling and dehumidification through desiccant, enhanced nocturnal radiation (Submitted by the Florida Solar Energy Center to the US Department of Energy).

Givoni, B., & Hoffman, M. E. (1970). Preliminary study of cooling of houses in desert regions by utilizing outgoing radiation (Research report). Haifa: Technion Israel Institute of Technology, Research Station.

Givoni, B. (1981). Experimental studies on radiant and evaporative cooling of roofs. Proceedings of International Passive and Hybrid Cooling Conference. Miami Beach, FL: AS/ISES, 279-283.

Etzion Y., & Dover, S. (1989) Radiative cooling of buildings (Research report). Sede Boqer, Israel: Ben Gurion University, Institute for Desert Research.

Vangtook, P., & Chirarattananon, S. (2006). An experimental investigation of application of radiant cooling in hot humid climate. Energy and Buildings, 38, 273-285.

Sandoval, L., Pineda, J., Castaneda, R., & Sanchez, L. (1991). Cooling ceiling pond in hot-humid climates. Proceedings of ISES Solar World Congress. Denver, CO.

Givoni, B. (1980). Experimental studies on passive cooling at the Institute for Desert Research in Israel. Proceedings of Solar Energy Symposium. Nice, France, 296-300.

Bourne, R. C., & Hoeschele, M. A. (1992). Cool storage roof (Demonstration project monitoring report). Davies, CA: Davis Energy Group.

Nutalaya, S. (1999). Passive cooling application in hot and humid country: Theory and experimentation. Case study: Khon Kaen, a city of Northeastern Thailand. Dissertation Abstracts International, 60 (08), 2712A. (UMI No. 9940524)

Choi, D. H., Joe, K. R., & Lee, B. Y. (2007). An evaluation on passive cooling effects of roof water spraying through the comparative experiments of indoor thermal environment on the top floor. In S. W. Shin, & H. W. Lee (Eds.), Proceedings of the International Conference on Sustainable Building Asia, SB07 Seoul (pp. 789-794). Seoul, Korea: Korean Green Building Council (KGBC).

Onmura, S., Matsumoto M., & Hokoi, S. (2001). Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings, 33, 653-666.

Areemit, N., & Sakamoto, Y. (2007). Numerical and experimental analysis of a passive roomdehumidifying system using the sorption property of a wooden attic space. Energy and Buildings, 39, 317-327.

Chenvidyakarn, T., Jongsuwanpaisan, T., & Tantasavasdi, T. (2007). Low-energy, building envelopeintegral system for air dehumidification. Manuscript in preparation.