Properties of Natural Fiber Cement Materials Containing Coconut Coir and Oil Palm Fibers for Manufacture of Building Materials
Main Article Content
Abstract
This article presents an investigation of the properties of cellulose fiber cement products, applicable for a hot-humid climate such as Thailand’s. These materials were made of cement paste containing coconut coir fibers and oil palm residues, both waste products from agricultural manufacturing in Thailand. They are intended to be used as roof sheet and siding materials to reduce heat transfer through buildings and energy conservation. The investigation focused mainly on the effects of both cellulose fibers on the physical, mechanical and thermal properties of products, as determined in accordance with the ASTM and JIS standards. From the results, the mixtures of fiber cement products containing 5% of both cellulose fibers by weight of Portland cement yielded optimal physical and mechanical properties. Furthermore, the thermal conductivity of the fiber cement pastes was 66% less than that of the control specimens, resulting in reduced energy consumption for air conditioning in residential buildings.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All material is licensed under the terms of the Creative Commons Attribution 4.0 International (CC-BY-NC-ND 4.0) License, unless otherwise stated. As such, authors are free to share, copy, and redistribute the material in any medium or format. The authors must give appropriate credit, provide a link to the license, and indicate if changes were made. The authors may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. The authors may not use the material for commercial purposes. If the authors remix, transform, or build upon the material, they may not distribute the modified material, unless permission is obtained from JARS. Final, accepted versions of the paper may be posted on third party repositories, provided appropriate acknowledgement to the original source is clearly noted.
References
Agopyan, V., Savastano Jr, H., John, V. M., & Cincotto, M. A. (2005). Developments on vegetable fibre–cement based materials in São Paulo, Brazil: An overview. Cement and Concrete Composite, 27(5), 527-536.
American Society of Testing and Material [ASTM]. (2006a). ASTM C20-00 Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. Philadelphia: Author.
American Society of Testing and Material [ASTM]. (2006b). ASTM C109 Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Philadelphia: Author.
American Society of Testing and Material [ASTM]. (2006c). ASTM C1185-03 Standard test methods for sampling and testing non-asbestos fiber-cement flat sheet, roofing and siding shingles and clapboards. Philadelphia: Author.
American Society of Testing and Material [ASTM]. (2006d). ASTM C1186-02 Standard specification for flat non-asbestos fiber-cement sheet. Philadelphia: Author.
Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21(2), 277–288.
Asasutjarit, C., Charoenvai, S., Hirunlabh, J., Khedari, J. (2009). Material and Mechanical Properties of Pretreated Coir-based Green Composites. Composites Part B: Engineering, 40(7), 633-637.
Bousri, K. (2001). การผลิตแผ่นฉนวนความร้อนจากฟางข้าว [The production of thermal insulation boards from rice straw]. Master of Engineering Thesis, King Mongkuts University of Technology Thonburi, Bangkok, Thailand.
Bureau of Trade and Economic Indices. (2011). ราคาวัสดุก่อสร้างส่วนกลาง เดือนธันวาคม 2554 กรุงเทพมหานคร [Consumer Price Indexes of Thailand]. Retrieved October 1, 2011, from http://www.price.moc.go.th/content1.aspx?cid=18.
Chiewnantawong, S. (2004). การออกแบบบ้านแถวเพื่อใช้พลังงานอย่างมีประสิทธิภาพ [Townhouse Design with Energy Efficiency]. Master of Architecture Thesis, Chulalongkorn University, Bangkok, Thailand.
Chuanraktam, W. (2005). นวัตกรรมน้ำมันปาล์มจากอุตสาหกรรมอาหารสู่แหล่งพลังงานทดแทนของคนไทย [Plam oil innovation: From the food industry to renovable energy sources in Thailand]. Engineering Today, 3(36), 58-63.
Cook, D. J., Pama, R. P., & Weerasingle, H. (1978). Coir fibre reinforced cement as a low cost roofing material. Building and Environment, 13(3), 193-198.
Delvasto S., Toro, E. F., Perdomo, F., & Mejía de Gutiérrez, R. (2010). An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets. Construction and Building Materials,
(2), 187-192.
Food and Agriculture Organization of the United Nations [FAO]. (2009). Natural Fibers: Coir, International Year of Natural Fibers 2009. Retrieved December 1, 2011, from http://www.naturalfibres2009.org.
Ilvessalo-Pfäffli, M.-S. (1995). Non wood fibers, fibers atlas: Identification of papermaking fibers. New York: Springer.
Japanese Standards Association [JSA, JIS]. (1992). JIS R 2618-1992 Testing method for thermal conductivity of insulating fire bricks by hot wire. Japan: Author.
Jústiz-Smith, N. G., Virgo G., & Buchanan, V. E. (2008). Potential of Jamican banana, coconut coir and bagasse fibres as composite materials. Materials Charaterization, 59(9), 1273-1278.
Khedari, J., Suttisonk, B., Pratinthong, N., & Hirunlabh, J. (2001). New lightweight composite construction materials with low thermal conductivity. Cement and Concrete Composites, 23(1), 65-70.
Krapoochai, K. (2003). แนวทางการสร้างแบบประเมินอาคารปรับอากาศ เพื่อประสิทธิภาพการประหยัดพลังงานในภูมิ-อากาศเขตร้อนชื้น [An approach to formulate energy conservation evaluation index for air-conditioned buildings in a hot-humid climate]. Master of Architecture Thesis, Chulalongkorn University, Bangkok, Thailand.
Kriker, A., Debicki, G., Bali, A., Khenfe, M. M., & Chabannet, M. (2005). Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composite, 27(5), 554-564.
Lewin, M., & Goldstein, I. (1991). Wood structure and composition. New York: Dekke.
Mingvimol, U. (2546). แนวทางในการสร้างแบบประเมินค่าการประหยัดพลังงานในอาคารพักอาศัย [An approach to formulate energy conservation evaluation index in residential buildings]. Master of Architecture Thesis, Chulalongkorn University, Bangkok, Thailand.
Pornchokchai, S. (2009). สถานการณ์ตลาดที่อยู่อาศัย ปี 2552 และแนวโน้มปี 2553 [Housing market in 2009 and trends in 2010]. Annual Report 2009. Home & Money, Journal of Housing Finance Association, 62-67.
Rangsiraksa, P. (2008). การควบคุมเสียงภายในอาคาร [Nouse control in building]. Bangkok, Thailand: Faculty of Architecture, King Mongkut Institute of Technology Ladkrabang.
Sun, J., Sun, X., Zhao, H., & Sun, R. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339.
Thai Green Label Board of Committee. (2008). ข้อกำหนดฉลากเขียวสำหรับกระเบื้องซีเมนต์มุงหลังคา [Cement roofing tiles]. Bangkok, Thailand: Office of The Green Label Secretariat, Thai Industrial Standards Institute.
Thai Industrial Standards Institute. (2008). กระเบื้องซีเมนต์ใยหิน: ปลอดภัยต่อสุขภาพ เป็นมิตรต่อสิ่งแวดล้อม [Asbestos cement tiles: Health, safety and environment]. Thai Green Label, 10.
TRIS Rating Co., Ltd. (2011). ทริสเรทติ้งบทวนและประเมินแนวโน้ม “ตลาดที่อยู่อาศัย” [TRIS Rating review and assess trends “Housing Market”]. Retrieved October 1, 2011, from http://www.trisrating.com/th/rating_ criteria.html
Vasanaprasert, S. (2007). การพัฒนาผนังซีเมนต์เส้นใยพืชสำหรับอาคารไม่ปรับอากาศ [Development of cement cellulose wall for passive building]. Master of Architecture Thesis, Silpakorn University, Bangkok, Thailand.
Yang, H., Yan, R., Chen, H., Lee, D., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781-1788.