Improvement of Louvers and Openings of Factory Building to Remove Heat through Natural Wind

Main Article Content

Pannatat Petchdee
Sudaporn Chungloo

Abstract

Heat accumulated in the factory building not only causes heat stress in workers but also reducesproductivity. This research is aimed at improving the opening and the louvers in consistent with the natural windand heat sources in buildings to remove heat. The study includes the measurement of the factory surfacetemperatures, air temperature and machinery heat and inputting into the model in ANSYS FLUENT 13.0, acomputational fluid dynamic program. The simulated results show the flow patterns and temperature of the airin the building. Simulation results show that the opening positions, angle of louvers and roof form bring warmair out of the building in two parts: heat attached to roof and heat in the working area. In addition, propercombination of opening position, louvers and roof form helps prevent the hot air from the top and increasingthe rate of heat flow out of work. The results show that the improvement of louvers increases wall openingfrom 10% to 30% and can reduce the working temperature down close to the ambient air of 32.5°C. Installationof opening on the roof can reduce the roof temperature by 10-12°C, resulting in preventing of radiative heattransfer from roof to working area.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Bansal, N. K., Mathur, R. & Bhandari, M. S. (1993). Solar chimney for enhance stack ventilation. Building and Environment, 28, 373–7.

Chenvidyakarn, T. (2005). The Impact of pre-cooling on multiple steady states in stack ventilation. Journal of Architectural/Planning Research and Studies, 3, 3-20.

Chungloo, S. (2007). Experimental and numerical studies of solar chimney and wetted roof: an application in the hot and humid climate. PhD thesis. Sirindhorn International Institute of Technology, Thammasat University, Thailand.

Chungloo, S. & Tienchutima, C. (2012). The effect of wing-walls and balcony on wind induced ventilation in high-rise residential units. Journal of Architectural/Planning Research and Studies, 8(1), 109-120.

DeFraeye, T., Blocken, B. & Carmeliet, J. (2010). CFD analysis of convective heat transfer at the surfaces of cube immersed in a turbulent boundary layer. International Journal of Heat and Mass Transfer, 53, 297-308.

Gan, G. (2006). Simulation of buoyancy-induced flow in open cavities for natural ventilation. Energy and Buildings, 38, 410–20.

Hirunlabh, J., Wachirapuwadon, S., Pratinthong, N. & Khedari, J. (2001). New configurations of a roof solar collector maximizing natural ventilation. Building and Environment, 36, 383–91.

Michael, G. Malaragns. (1982). Wind in architectural and environmental design. New York: Van Nostrand Reinhold.

Royal Thai Government Gazette. (2008). ประกาศกระทรวงอุตสาหกรรม เรื่อง มาตรการคุ้มครองความปลอดภัยในการประกอบกิจการโรงงานที่เกี่ยวกับสภาวะแวดล้อมในการทำงาน พ.ศ. 2546 [Notification of Ministry of Industry, Subject: Measures of safety of the operator with respect to the environment in the workplace 2003]. Retrieved January 25, 2012, from http://www.siamsafety.com

Srivanit, M., & Hokao, K. (2012). Thermal infrared remote sensing for urban climate and environmental studies: An application for the city of Bangkok, Thailand. Journal of Architectural/Planning Research and Studies, 9(1) 83-100.

Thai Meteorological Department. (2003). อุณหภูมิกระเปาะแห้ง ความชื้นสัมพัทธ์ และความเร็วลมรายชั่วโมง ปี 2542 – 2551 [Hourly data of dry bulb temperature, relative humidity and wind velocity in 1999-2008]. Retrieved August 10, 2012, from http://www.diw.go.th

The American Society of Heating, Refrigerating and Air-conditioning Engineers [ASHRAE]. (2001). ASHRAE handbook-fundamentals (SI) 2001. Atlanta: Author.