Leveraging Artificial Intelligence and Cultural Dynamics for Sustainable Rubber Farming

Main Article Content

William Philip Wall

บทคัดย่อ

          This paper explores the impact of artificial intelligence and cultural factors on rubber farming, focusing on sustainability. The study variables include Technological Advancement, Artificial Intelligence, Satisfaction, Culture, Perceived Value, and Sustainability. The study adopted a quantitative survey research design. A questionnaire was used to elicit responses from 407 rubber farmers in Thailand. The results were analyzed using structural equation modeling. The findings indicated that technological advancement positively and significantly impacts sustainability, supporting the hypothesis that adopting advanced technologies contributes to sustainable practices. This suggests that incorporating technological innovations can improve rubber farming efficiency, resource utilization, and environmental outcomes. Also, the study found that artificial intelligence does not significantly impact sustainability. Contrarily, culture was found to have a significant positive effect on sustainability. This result highlights the importance of cultural factors, including traditional knowledge and local practices, in shaping sustainable approaches to rubber farming. Acknowledging and integrating cultural values and practices into sustainable strategies can lead to more contextually relevant and socially accepted solutions. While technology advancement and culture significantly impacted sustainability, artificial intelligence, and satisfaction did not exhibit significant direct effects. However, the mediating effects of culture, technology advancement, and artificial intelligence suggest that these factors can enhance the relationship between satisfaction, perceived value, and sustainability in rubber farming. These findings contribute to a better understanding of the complex interplay between different variables and sustainability outcomes, providing valuable insights for practitioners, policymakers, and researchers aiming to promote sustainability in the rubber farming industry.

Article Details

บท
บทความวิจัย

References

Alarcón, D., & Sánchez, J.A. (2015) Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Composite Reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT). In Spanish STATA Meeting, Universidad Pablo de Olavide, 39, 1-39.

Ballesteros, R., Intrigliolo, D. S., Ortega, J. F., Ramírez-Cuesta, J. M., Buesa, I., & Moreno, M. A. (2020). Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precision Agriculture, 21, 1242-1262.

Basso, B., & Antle, J. (2020) Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 3 (4), 254-256.

Ben Ayed, R., & Hanana, M. Artificial intelligence to improve the food and agriculture sector. Journal of Food Quality, 2021, 1-7. https://doi.org/10.1155/2021/5584754

Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.

Bhagat, P. R., Naz, F., & Magda, R. (2022). Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PloS ONE, 17(6), e0268989. https://doi. org/10.1371/journal.pone.0268989

Bhat, S. A., & Huang, N. F. (2021) Big data and ai revolution in precision agriculture: Survey and challenges. IEEE Access, 9, 110209-110222.

Bollen, K.A. (1990). Overall fit in covariance structure models: Two types of sample size effects. Psy chological Bulletin, 107, 256-259.

Chaterji, S., DeLay, N., Evans, J., Mosier, N., Engel, B., Buckmaster, D., & Chandra, R. (2020). Arti ficial intelligence for digital agriculture at scale: Techniques, policies, and challenge s. arXiv preprint arXiv:2001.09786. https://doi.org/10.48550/arxi v.2001.09786

Dora, M., Kumar, A., Mangla, S. K., Pant, A., & Kamal, M. M. (2020). Critical success factors influencing artificial intelligence adoption in food supply chains. International Journal of Production Research, 60(14), 4621-4640.

Fountas, S., Espejo-Garcia, B., Kasimati, A., Mylonas, N., & Darra, N. (2020). The future of digital agriculture: technologies and opportunities. IT Professional, 22(1), 24-28. https://doi.ieeecomputersociety.org/10.1109/MITP.2019.2963412

FSC. (2018). FSC welcomes Thai Government's support on certifying rubber under FSC certification scheme. Forest Stewardship Council. April 7, https://asiapacif ic.fsc.org/newsfeed/fsc-welcomes-thai-governments-support-on-certifying-rubber-under-fsc-certification-scheme, , last accessed on 10/12/2022.

Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I., Baum, S., Farber, D., Fischer, J., Garcia, D., McPhearson, T., Jimenez, D., King, B., Larcey, P., & Levy, K. (2021,). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67, 101741. https://doi.org/10.1016/j.techsoc.2021.101741

Gilbertson, L.M., Pourzahedi, L., Laughton, S., Gao, X., Zimmerman, J.B., Theis, T.L., Westerhoff, P., & Lowry, G.V. (2020,). Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 15(9), 801-810. https://doi.org/10.1038/s41565-020-0706-5

Gitz, V., Meybeck, A., Pinizzotto, S., Nair, L., Penot, E., Baral, H., & Xu, J. (2020). Sustainable development of rubber plantations in a context of climate change: Challenges and opportunities. CIFOR-ICRAF: The CGIAR Research Program on Forests, Trees and Agroforestry (FTA). https://doi.org/10.17528/cifor/007860

Gorb, O. ( 2017). Development of complex approach to defining the notion “sustainable development of rural territories”. Forum Scientiae Oeconomia. 5(2), 87-99.

Hara, P., Piekutowska, M., & Niedbała, G. (2021). Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land, 10(6), 609. https://doi.org/10.3390/land10060609

Hou, R., & Wen, C. (2021). Sustainable Tea Garden Ecotourism Based on the Multifunctionality of Organic Agriculture Based on Artificial Intelligence Technology. Mobile Information Systems, 1-9. https://doi.org/10.1155/2021/8696490

Hsu, S. Y., Chang, C. C., & Lin, T. T.. (2019). Triple bottom line model and food safety in organic food and conventional food in affecting perceived value and purchase intentions. British Food Journal, 121(2), 333-346.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. https://doi.org/10.1080/10705519909540118

Jang, H. W., & Lee, S. B. (2020). Serving robots: Management and applications for restaurant business sustainability. Sustainability,12(10), 3998. https://doi.org/10.3390/su 12103998

Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021,). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15-22.

Kawano, M. Changing Resource-Based Manufacturing Industry: The Case of the Rubber Industry in Malaysia and Thailand. In: Tsunekawa, K., Todo, Y. (eds) Emerging States at Crossroads. Emerging-Economy State and International Policy Studies. Springer, Singapore, , pp. 145-162. https://doi.org/10.1007/978-981-13-2859-6_7

Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9), 4883. https://www.mdpi.com/2071-1050/13/9/4883/notes

Lazaroiu, G., Andronie, M., Uţă, C., & Hurloiu, I. (2019). Trust management in organic agriculture: sustainable consumption behavior, environmentally conscious purchase intention, and healthy food choices. Frontiers in Public Health, 7, 340. https://doi.org /10.3389%2Ffpubh.2019.00340

Leepromrath, S., Zhu, J., Zhou, J., Li, T., & Zhou, D. (2021). Rubber crop diversity and its influential factors in Thailand. Journal of Rubber Research, 24(3), 461-473.

Li, M., Wang, J., Zhao, P., Chen, K., & Wu, L. (2020.). Factors affecting the willingness of agricultural green production from the perspective of farmers' perceptions. Science of the Total Environment, 738, 140289, https://doi.org/10.1016/j.scitotenv.2020. 140289

Liu, J., Xiang, J., Jin, Y., Liu, R., Yan, J., & Wang, L. (2021,). Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote Sensing, 13(21), 4387.

Matzembacher, D. E., & Meira, F. B. (2019). Sustainability as business strategy in community supported agriculture: Social, environmental and economic benefits for producers and consumers. British Food Journal, 121 (2), 616-632.

Mhlanga, D.. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability, 13 (21), 5788. https://doi.org/ 10.3390/rs 13214387

Min, S., Huang, J., & Waibel, H. (2017,). Rubber specialization vs crop diversification: the roles of perceived risks. China Agricultural Economic Review, 9 (2), 188-210. https://doi.org/10.1108/CAER-07-2016-0097

Min, S., Wang, X., Jin, S., Waibel, H., & Huang, J. (2020). Climate change and farmers’ perceptions: impact on rubber farming in the upper Mekong region. Climatic Change, 163, 451-480.

Mohamed, E. S., Belal, A. A., Abd-Elmabod, S. K., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 971-981.

Monteiro, J., & Barata, J.. (2021). Artificial intelligence in extended agri-food supply chain: A short review based on bibliometric analysis. Procedia Computer Science, 192, 3020-3029. https://doi.org/10.1016/j.procs.2021.09.074

Negash, Y. T., Sriplod, T., & Hassan, A. M. A. (2021,). causal sustainable natural rubber development framework using a hierarchical structure with linguistic preferences in Thailand. Journal of Cleaner Production, 305, 127095. https://doi.org /10.1016 /j.jclepro.2021.127095

Phoungthong, K., Sinutok, S., Suttinun, O., Palamae, S., Mungkalasiri, J., Suksatit, P., & Musikavong, C. (2021). Sustainability indicators for rubber plantations in Thailand: Environmental integrity dimension. IOP Conference Series: Materials Science and Engineering, 1163(1), 012017. https://doi.org/10.1088/1757-899X /116 3/1/0 12017

Pyay, S., Thanungkano, W., Mungkalasiri, J., & Musikavong, C. (2019). A life cycle assessment of intermediate rubber products in Thailand from the product environmental footprint perspective. Journal of Cleaner Production, 237, 117632. https://doi.org /10.10 16/j.jclepro.2019.117632

Robinson, S. C. Trust, transparency, and openness. (2020). How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421. https://doi.org/10.1016/j.techsoc.2020. 101421

Saosee, P., Sajjakulnukit, B., & Gheewala, S. H. (2022). Environmental externalities of wood pellets from fast-growing and para-rubber trees for sustainable energy production: A case in Thailand. Energy Conversion and Management: X,14,100 183.https://doi . org/10.1016/j.ecmx.2022.100183

Sharma, A., Georgi, M., Tregubenko, M., Tselykh, A., & Tselykh, A. (2022). Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Computers & Industrial Engineering, 165, 107936. https://doi.org /10.1016/j.cie.2022.107936

Singh, J., & Yadav, A. N. (Eds.). (2020). Natural bioactive products in sustainable agriculture. Springer Nature.

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136.

Somboonsuke, B., Yincharoen, A., Kongmanee, C., & Phitthayaphinant, P. (2019). Rubber production system and livelihood of smallholding rubber farming system (SRFS) in southern Thailand: A case study in provinces of Nakhon Si Thammarat, Phatthalung and Trang. International Journal of Agricultural Technology, 15, 645-664.

Sridhar, A., Balakrishnan, A., Jacob, M. M., Sillanpää, M., & Dayanandan, N.. (2023). Global impactofCOVID19onagriculture :roleofsustainableagricultureanddigitalfarming. Environmental Science and Pollution Research, 30 (15), 42509-42525.

Statista. (2023a). Thailand: natural rubber production 1961-2020. https://www.statista.com /statistics/1244795/total-thailand-natural-rubberproduction/lastaccessedon20/6/2023.

Statista.( 2022. 2023b ). Thailand: volume of rubber exports https://www.statista.com/ statistics /1178832/thailand-volume-of-rubber-exports/#:~: text=Thai land%20exported%20approximately%203.28%20million, last accessed on 14/7/2023.

Triantafyllou, A., Sarigiannidis, P., & Bibi, S. (2019). Precision agriculture: A remote sensing moni toring system architecture. Information, 10 (11), 348. https://doi.org /10.33 90/info10110348

Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, G., & Tarabella, A. (2019). From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. British Food Journal, 121(8), 1730-1743.

Ullo, SL & Sinha, G.R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/ rs1313258 5

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A. Langhans, S.D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y

Warren‐Thomas, E., Nelson, L., Juthong, W., Bumrungsri, S., Brattström, O., Stroesser, L., ... & Dolman, P. M. (2020). Rubber agroforestry in Thailand provides some biodiversity benefits without reducing yields. Journal of Applied Ecology, 57(1), 17-30.

World Bank Group. (2017.). Thailand economic monitor: Digital transformation. https://doc uments.worldbank.org/pt/publication/documents-reports/documentdetail/437841530 850260057/thailand-economic-monitor-digital-transformation, last accessed on 22/6 /2022.

Yadav, A. N. (2020). Plant microbiomes for sustainable agriculture: current research and future challenges (pp. 475-482). Springer International Publishing.

Yadav, A.N. (2020). Plant microbiomes for sustainable agriculture: current research and future challenges. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds.), Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25, pp. 475-482, Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_16

Yeh, S. C., Wu, A. W., Yu, H. C., Wu, H. C., Kuo, Y. P., & Chen, P. X. (2021). Public perception of artif icial intelligence and its connections to the sustainable development goa ls. Sustainability, 13(16), 9165. https://doi.org/10.3390/su131 69165

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A., ... & Li, R. Y. M. (2020). Artificial intelligence technologies and related urban planning and development concepts: How are they perceived and utilized in Australia?. Journal of Open Innovation: Technology, Market, and Complexity, 6 (4), 187. https://doi. org /10.3390/joitmc6040187