Factors of Artificial Intelligence (AI) Technology Acceptance Influencing Usage Intentions Among Students at Chiang Rai Rajabhat University
Keywords:
Technology acceptance, Artificial Intelligence (AI), Technology Acceptance Model (TAM), Behavioral intentionAbstract
This research aimed to (1) to examine the levels of perceived ease of use, perceived usefulness, attitude toward use, and behavioral intention to use artificial intelligence (AI) technology among students at Chiang Rai Rajabhat University (2) to investigate the relationships between perceived ease of use, perceived usefulness, and attitude toward use and the behavioral intention to use AI technology and (3) to analyze the influence of perceived ease of use, perceived usefulness, and attitude toward use on the behavioral intention to use AI technology among students at Chiang Rai Rajabhat University. A quantitative research design was employed using an online questionnaire as the main instrument. The sample consisted of 400 undergraduate students. The data were analyzed using descriptive statistics, Pearson’s correlation coefficient, and multiple regression analysis.
The results revealed that students demonstrated highly positive perceptions and attitudes toward AI technology. The most commonly used AI tools were ChatGPT (86.75%), Canva (85.25%), and Google Gemini (56.0%). The overall mean scores indicated high to very high levels of perceived usefulness (M = 4.27), attitude toward use (M = 4.20), behavioral intention (M = 4.17), and perceived ease of use (M = 4.01). The correlation analysis showed that all variables were positively and significantly related at the .01 level, with the strongest relationship found between attitude and behavioral intention (r = .673).
The multiple regression analysis indicated that perceived ease of use, perceived usefulness, and attitude toward use had significant positive effects on behavioral intention (R² = 0.766, p < .001). The most influential predictor was attitude toward use (β = .531,p < .001), followed by perceived usefulness (β = .191, p < .001) and perceived ease of use (β = .178, p < .001). These findings highlight that a positive attitude plays a crucial role in motivating students to adopt AI technology. The results provide valuable implications for curriculum development, instructional innovation, and strategic policies to promote sustainable AI integration in higher education institutions.
References
มหาวิทยาลัยราชภัฏเชียงราย. (2568). รายงานข้อมูลจำนวนนักศึกษาระดับปริญญาตรี ภาคการศึกษา 1 ปีการศึกษา 2568. สำนักงานทะเบียนและประมวลผล มหาวิทยาลัยราชภัฏเชียงราย.
สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์. (2566). รายงานประจำปี พ.ศ. 2566: ยุทธศาสตร์ AI แห่งชาติ (Thailand National AI Strategy and Action Plan พ.ศ. 2565 – 2570). กรุงเทพมหานคร: สำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์. สืบค้นจาก https://ai.in.th/wp-content/uploads/2024/06/AI-Thailand-Annual-Report-2023.pdf
สำนักงานส่งเสริมเศรษฐกิจดิจิทัล. (2565). รายงานแผนพัฒนากำลังคนด้านดิจิทัล พ.ศ. 2565 – 2570. กรุงเทพมหานคร: สำนักงานส่งเสริมเศรษฐกิจดิจิทัล. สืบค้นจาก https://www.depa.or.th/th/article-view/digital-workforce-development-plan
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed-mode surveys: The tailored design method (4th ed.). Hoboken, NJ: John Wiley & Sons.
ETDA. (2023). Thailand Internet user behavior 2023 report. Electronic Transactions Development Agency (ETDA).
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
IBM. (2024). What is artificial intelligence (AI)? Retrieved October 29, 2025, from https://www.ibm.com/think/topics/artificial-intelligence
Kamalov, F., Calong, R., & Gurrib, I. (2023). Ethical implications of AI in higher education. https://arxiv.org/abs/2305.18303
Latif, S., Qadir, J., Qayyum, A., et al. (2023). Artificial general intelligence: Key concepts and future directions. https://arxiv.org/abs/2304.12479
Luckin, R. (2018). Machine learning and human intelligence: The future of education for the 21st century. London: UCL Institute of Education Press.
McKinsey & Company. (2021). The state of AI in 2021. ttps://www.mckinsey.com/capabilities/ quantumblack/our-insights/the-state-of-ai-in-2021
Ministry of Digital Economy and Society. (2021). Thailand artificial intelligence (AI) ethics guidelines. Bangkok: MDES.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
Yamane, T. (1973). Statistics: An introductory analysis (3rd ed.). New York, NY: Harper & Row.
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27. doi:10.1186/s41239-019-0171-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Chiangrai Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ต้นฉบับที่ได้รับการตีพิมพ์ในวารสารบัญชีปริทัศน์ มหาวิทยาลัยราชภัฏเชียงราย ถือเป็นกรรมสิทธิ์ของมหาวิทยาลัยราชภัฏเชียงราย ไม่อนุญาตให้นำข้อความทั้งหมดหรือบางส่วนไปพิมพ์ซ้ำ เว้นเสียแต่ว่าจะได้รับอนุญาตจากมหาวิทยาลัยราชภัฏเชียงราย เป็นลายลักษณ์อักษร