THE MEDIATING ROLE OF SUPPORTIVE FACTORS IN ACHIEVING SUSTAINABILITY AND EFFECTIVENESS IN EDUCATIONAL SUPERVISION

Main Article Content

Thanong Thongphubate
Katchrin Kanpinit
Surakij Prangsorn
Ratthachakphon Samthongklum
Puncharat Tosamphan
Kullaphat kulchartdilok

Abstract

Research on the role of sustainability support factors in the effectiveness of supervision in this study. Its purpose is to 1) study the supportive factors for sustainability towards the effectiveness of educational supervision, 2) develop a structural equation model of supportive factors for sustainability towards the effectiveness of educational supervision, and 3) analyze the mediating role of supportive factors for sustainability towards the effectiveness of educational supervision. The sample group consisted of 156 primary school directors, selected by simple random sampling. Data were collected using a 5-point Likert scale questionnaire and analyze quantitative data with statistics, frequencies, percentages, averages, and standard deviations. Confirmatory factor analysis (Confirmatory Factor Analysis: CFA) Qualitative data were analyzed using inductive content analysis. and interpret the role of sustainability support factors in the effectiveness of educational supervision.


The research findings revealed that:


1) the overall supportive factors for sustainability towards the effectiveness of educational supervision were at the highest level,


2) the structural equation model of supportive factors for sustainability towards the effectiveness of educational supervision showed a Chi-square (χ²) value of 206.036, df = 102, p = 0.000, CMIN/DF = 2.020, CFI = 0.954, RMR = 0.018, and RMSEA = 0.081, indicating that the model was well-fitted, and


3) the mediating role of supportive factors for sustainability towards the effectiveness of educational supervision showed that supportive factors had a significant role in promoting the effectiveness of educational supervision, with a direct relationship with practice (regression coefficient 0.90) and effectiveness (regression coefficient 0.86). Additionally, there was an indirect mediating role through practice, where good practice (regression coefficient 0.78) helped enhance the effectiveness of educational supervision. Supportive factors for sustainability promoted good practice and increased the effectiveness of educational supervision both directly and indirectly.

Article Details

Section
Research Articles

References

เก็จกนก เอื้อวงศ์. (2564). การนิเทศการศึกษาในระบบการศึกษาขั้นพื้นฐาน. กรุงเทพมหานคร: สำนักพิมพ์แห่งมหาวิทยาลัยเกษตรศาสตร์.

จิระภา ธรรมนําศีล. (2562). การวางแผนและการประเมินผลการนิเทศการศึกษา. กรุงเทพมหานคร: สำนักพิมพ์แห่งมหาวิทยาลัยเชียงใหม่.

จิราภรณ์ สีลา. (2563). การนิเทศการศึกษาเชิงพัฒนา. กรุงเทพมหานคร: สำนักพิมพ์แห่งมหาวิทยาลัยศิลปากร.

ทิพวรรณ ถาวรโชติ. (2564). แนวคิดและทฤษฎีการนิเทศการศึกษา. กรุงเทพมหานคร: สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

ยุวดี พงษ์สาระนันท์กุล. (2564). แนวทางการนิเทศการศึกษาแบบผสมผสาน. กรุงเทพมหานคร: สำนักพิมพ์แห่งมหาวิทยาลัยธรรมศาสตร์.

หน่วยศึกษานิเทศก์ สำนักงานการศึกษาขั้นพื้นฐาน. (2564). แนวทางการนิเทศการศึกษา. กรุงเทพมหานคร: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

Brown, J., & Green, M. (2017). Sustaining Effective Educational Supervision. Journal of Education Policy, 34(2), 123-145.

Byrne, B. M. (2010). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (2nd ed.). Routledge.

Chaiya, J., & Thamrongsotthisakul, W. (2023). Blended Approach to Educational Supervision. Journal of Educational Management, 19(1), 33-45.

Glickman, C. D., Gordon, S. P., & Ross-Gordon, J. M. (2018). SuperVision and Instructional Leadership: A Developmental Approach (10th ed.). Pearson.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2014). Multivariate Data Analysis (7th ed.). Pearson.

Hoyle, R. H. (Ed.). (2012). Handbook of Structural Equation Modeling. Guilford Press.

Hu, L. T., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling, 6(1), 1-55.

Jones, A., Smith, J., & Taylor, L. (2019). Support Factors in Educational Supervision. International Journal of Educational Leadership, 11(2), 234-250.

Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (4th ed.). Guilford Press.

Lee, K. (2018). Factors Influencing Sustainable Educational Supervision. Journal of Educational Development, 12(3), 456-478.

Schumacker, R. E., & Lomax, R. G. (2016). A Beginner's Guide to Structural Equation Modeling (4th ed.). Routledge.

Smith, J., & Engle, P. (2020). Educational Supervision and Quality Improvement. Education Press.

Soper, D.S. (2024). Sample Size Calculator. [Online software]. Retrieved from https://www.danielsoper.com/statcalc

Taylor, J., & Francis, R. (2022). Effective Educational Supervision. Journal of School Administration, 45(1), 89-102.

Wang, X., Chen, Y., & Zhou, L. (2021). Policy and Strategy Development in Educational Supervision. Educational Research Journal, 27(4), 567-589.