Structural Equation Modeling of Pico Finance Customers’ Financial Behaviors in Bangkok Metropolitan Region

Main Article Content

Sarunya Somsong
Numchai Supparerkchaisakul

Abstract

           The objective of this research was to examine and to compare the structural equation modeling of PICO finance customers’ financial behaviors in Bangkok metropolitan region between creditworthy customers and non-creditworthy customers. The total of 537 samples were 274 creditworthy customers and 263 non-creditworthy customers from multi-stage sampling. There are 9 questionnaires used to measure variables. The item objective congruence (IOC) was greater than 0.5 and the reliability of the measures of each variable ranged from 0.84 to 0.98. There are 2 important findings in this study. First, the structural equation model of financial behavior among PICO finance customers in Bangkok metropolitan region is goodness of fit with the empirical data, resulting the goodness of fit indices with  = 315.29, df = 115, (p < 0.05), SRMR = 0.045, RMSEA = 0.057, GFI = 0.94, NFI = 0.92, CFI = 0.95, TLI = 0.93, AGFI = 0.91, PNFI = 0.69 and /df = 2.74. The top 3 causal variables that totally affected financial behavior, namely, attitude toward financial behavior (Total effect 0.70), social capital (Total effect 0.37), and financial literacy (Total effect 0.32). All causal variables accounted for 85% of variance in financial behavior. Secondly, the creditworthy customers have higher financial capabilities than non-creditworthy customers, showing that creditworthy customers had the effect coefficient of financial literacy on financial skills (0.62) higher than non-creditworthy customers (0.35).

Article Details

How to Cite
Somsong, S., & Supparerkchaisakul, N. . (2023). Structural Equation Modeling of Pico Finance Customers’ Financial Behaviors in Bangkok Metropolitan Region. Journal of Roi Kaensarn Academi, 8(11), 213–234. retrieved from https://so02.tci-thaijo.org/index.php/JRKSA/article/view/263381
Section
Research Article

References

สถาบันวิจัยพฤติกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ. (2559). พฤติกรรมศาสตร์มุมมองในศาสตร์ที่แตกต่าง. กรุงเทพมหานคร: ห้างหุ้นส่วนจำกัด โรจนพริ้นติ้ง (สำนักงานใหญ่).

ธนาคารแห่งประเทศไทย. (2563). รายงานผลการสำรวจทักษะทางการเงินของไทย ปี 2563. ธนาคารแห่งประเทศไทย.

ธนาคารแห่งประเทศไทย. (2564). “สินเชื่อส่วนบุคคลดิจิทัล” สินเชื่อยุคใหม่เพื่อคนตัวเล็ก. ธนาคารแห่งประเทศไทย.

Dlugosch, T. J., Klinger, B., Frese, M., & Klehe, U. C. (2018). Personality‐based selection of entrepreneurial borrowers to reduce credit risk: Two studies on prediction models in low‐and high‐stakes settings in developing countries. Journal of Organizational Behavior. 39 (5), 612-628.

Financial Services Authority. (2005). Measuring financial capability: an exploratory study. FSA Consumer Research 37.

Gyuroski, I. I. (2017). Predictors and Implications of Personal Finance Management. (PhD.). University of Chicago, Chicago, Illinois. (Psychology).

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5). 164-166.

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica. 47 (2), 263-292.

Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American psychologist. 39 (4), 341.

Karlan, D. (2005). Using Experimental Economics to Measure Social Capital and Predict Financial Decisions. American Economic Review. 95 (5), 1688-1699.

Karlan, D. (2007). Social connections and group banking. Economic Journal. 117, F52–F84.

Karlan, D., Sendhil, M., & Omar, R. (2013). Measuring Personality Traits and Predicting Loan Default with Experiments and Surveys In Banking the World: Empirical Foundations of Financial Inclusion: MIT Press.

Klinger, B., Khwaja, A. I., & Del Carpio, C. (2013). Enterprising psychometrics and poverty reduction (Vol. 860). New York: NY: Springer.

Kunt, A. D., Klapper, L., Singer, D., & Oudheusden, P. V. (2015). The global findex database 2014: Measuring financial inclusion around the world. World Bank Policy Research Working Paper, 7255.

Lomax, R. G., & Schumacker, R. E. (2004). A beginner's guide to structural equation modeling: psychology press.

Perry, V. G. (2008). Giving credit where credit is due: The psychology of credit ratings. The Journal of Behavioral Finance. 9 (1), 15-21.

Perry, V. G., & Morris, M. D. (2005). Who is in control? The role of self‐perception, knowledge, and income in explaining consumer financial Behavior. Journal of Consumer Affairs. 39 (2), 299-313.

Shoji, M., Aoyagi, K., Kasahara, R., Sawada, Y., & Ueyama, M. (2012). Social capital formation and credit access: Evidence from Sri Lanka. World Development. 40 (12), 2522-2536.