NISYUNBITRYAIINILNTRULNEYINIUILSIANARIA
dAmsurulungn SET50 nsal@nsnaaiananniwduvisilssinalng
Data Mining of Financial Statement for Predicting Common Stock Prices for SET50:

A Case Study of Thailand

al ¢ ala o,
ﬁ:ﬂzuﬂ FTTRAUNTOU* LAZATTITIE WINHNN?
Tapanee Treeratanaporn* and Watcharawat Promma’

Received : October 4, 2021 Revised : May 31, 2022 Accepted : June 10, 2022

UNAAED

aa ° a ° A ¥ o A o dld 1 v
NUIRLUN mf]ﬂi‘?.i@\‘iﬂﬂuﬂ’ﬁ‘u’]mﬂuﬂﬂqi‘%’]LMN@\W@H@N’WH?i&!ﬂML‘Wﬂﬁ’]ﬂ‘ﬂ"m‘ﬂiﬂN@ﬁl’rﬂ?"lﬁqlﬁ]ﬂ"lﬂ‘llﬂ\‘ﬁ)lu

ansinyngu SETS0 lumansmanyineuvislszma lnauasievinwemaaaazesiudmiunisamuluemnantszans

¥ '
a o a A a o a

TuuAdeil Ae Usimnaanzidaulungy SET 50 iudeyasunisRuiuunasi 56-1 Aausit w.e. 2559 Dl w.A. 2563
o v d'd 1 ' = o v o ! oy ¥ v o a o ' ! o 1 o
saudssiunaAnn laun uasnzidauw ausuuansdty douaesgiedu mels nlegns nlsseduaasieduadny

1 a ?:/ o a Ql [~ ¥ i‘: v o £ dl U o [ 1
waznsanRuiung dunaunisaBuuEnanifiumundeyaiainl ddayanldiumaninazenn Usuuss uay
Awmsimamatianisimilesdayaluaiugluuy Ae Generalized Regression Model, Decision Tree uag Support
Vector Machine Tag/ldiaTasiiallsunsu RapidMiner Go nannaaanwuan Weldvisanumaiiaiuansnaiueenyl naans
lAannanuduiususaziaulsiinanuansneiu agrelsfinlanansonninsuiaanumaiianuan faudssuis 7
DTRNNNANE AauinasasAna1nTauansinylungs SET 50 Ha&u nan1svinugiansnnaInA RMSE (Root
Mean Square Error) iludAty @ecnAn RMSE fAndasudnsindmnuiananiatias A1 RMSE 1a4naTia Decision
Tree HANWINAL 28.19 Support Vector Machine Winfiu 35.05 uaz Generalized Regression Model Winfiu 40.78
FAINAAL A9t Decision Tree asliuanisinunandaaugnsiasinfigaluaiuuaumaiiail dmsunisuaning
294 Decision Tree azuandtalugunu) sl 491 Support Vector Machine uansuaifiuanumiin uas

Generalized Regression Model wansnaliluaduilsz@ns

AdIATY - Nsmdesdaya N9viung 91Al JUN9RY

* faqadransnansd naddAanssu ininuarenfames iudngnaumalulatinszasuindnszunsvile

* Assistant Professor, Department of Electrical and Computer Engineering, Faculty o Engineering, King Mongkut's University of
Technology North Bangkok

? pnanseilszan anandnnsind dnindainnseanne unanandedadnend

: Lecturer, Program of Accountancy, School of Management, Walailak University

*

Corresponding author E-mail: tapanee.t@eng.kmutnb.ac.th



msrindeudayavinuumsidulierinesimnandnsuAulungu SET50 4 / g:U:08 nSSunsal a: 96SIssy WSruLn

Abstract

The objective of this research aimed to apply data mining techniques to investigate the market price of
common stock from SET50 in the Stock Exchange of Thailand in order to forecast the market price for investment.
The population consist of fifty companies. We collected the financial statements (form 56-1) all fifty companies in
SET50 since 2016 to 2020. The factors or variables that we concerned are composed of seven variables: revenue,
net profit, profit per shareholder’s equity, shareholder’s equity, number of common shares, registered capital, and
dividend. We used three various data mining techniques including Generalized Regression Model, Decision Tree,
and Support Vector Machine by using RapidMiner Go as a tool. The research results indicated that all seven factors or
variables that we concerned significantly affect the market price. However, each data mining technique forecast
different levels. We considered the values of RMSE (Root Mean Squared Error) importantly; less RMSE, less error.
We found that RMSE from lowest to highest value are Decision Tree (28.19), Support Vector Machine (35.05), and
Generalized Regression Model (40.78) respectively. It meant that Decision Tree is the best for forecasting in this
research. Decision Tree showed the results in the form of decision tree visualization. Support Vector Machine and

Generalized Regression Model showed the result in term of weight and coefficient consecutively.
Keywords : Data mining, Forecasting, Common stock price, Finance statement
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WeNTl NNFAFNULILANABINNADA N3Llsviiuna wazn3U5uld €91 RapidMiner Go wlugdqunileresldsunau
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v a o [y 4 v o o a ° . o ' Y 2 o
wazsunteyanuauawing aniuldiihdayaiunyinaiinazen (Data Cleansing) Uiuusisainiiiiaeiou

Amzvisae llsunsa RapidMiner Go sl
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Wednzvidayaauau 50 151w lneldrauwlssiu 7 fa feusit w.e. 2559 Tia 2563 satililsunsy RapidMiner
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Mndulawiutesd (Open Source) NaaNSLINAATUL AR AN RMSE (Root Mean Squared Error) 289ufiazinaiinges

naviwdesdeya RMSE Aia N13¥1 Square Root (SQRT) A1 MSE (Mean Squared Error) 1ivaliilsien Loss Nifiuiae
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1
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%

1979 1 UAAIA1 RMSE (Root Mean Squared Error) 294n153LA9NE TR aR8mATA Decision Tree,

Support Vector Machine 182 Generalized Linear Regression Model

£1919 1 A1 RMSE (Root Mean Squared Error) maqmﬁmiﬁzﬁi@sﬂ@

wallAnsyinuliastaya (Data Mining) Aivaanld A1 RMSE (Root Mean Squared Error)
uldsndula (Decision Tree wsa DT) 28.19
dnnafaanmesuundu (Support Vector Machine 9138 SVM) 35.05
N133ATIEANInANRELTELEY (Generalized Linear Regression Model) 40.78
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5.1 uaanspaedanulinnaula (Decision Tree)
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pulirndulainiednrianaINisnreInIdRngNTesusias AN e Aouls veeiladt Taun Ardail

AT (Gini Index) uaz Ateulnstl (Entropy) (n3nien ﬂﬁ@%@m’é, 2559) ﬂ'wﬁmﬁ%ﬁﬂumﬁmmﬂdﬁQmﬁnwmw’%
dadelamatiandidunnsnenzlunisuiangy sesnesaneisuiild 1 J48 uaz CART dausaulnadiduniada
A luueY (Randomness) 193da3a #411n1391 Model Classification HuATI84NNT A NI¥NEAANATE
Target Variable lfusiuthunniige e eansanarsliviueulildinniian sisenenenuusnaaaes Target
Variable Lﬁ@lﬁ’lﬁ”ﬁmmwﬂmmmaimmmwﬁamﬂﬁqm Lﬁ@mmxsﬁﬁﬁﬁﬁ@g@ﬁumﬁ’]mmmmm (Data Cleansing)
WAD Lmuﬁmmﬂﬁﬁmﬂ@'lumu%”ﬂiﬂuﬁﬂgﬂL%\ﬁﬁmm mmz;ﬁﬁﬁaﬁﬁ@g@L%\‘i‘]_l’i‘mmmmﬁuﬁmnfoju (Categorize)
Inalifel ey aesludasfinzay Welfaunmiagimnsuasuaniualfagamanza
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(Node) Tunssindwlasadalyl e snals (Revenue) anunuiuansity (Equity) Ruiluna (Dividend) uay dauansine
Sfuanslty (Number of shares) puninisznay 1 (daugnmawiadndiuanilesesnmidunadngilganidsunsy
Rapid Miner anadnsilnuaz@amunnileugnsdangiinm - ifenaslisesnudn) s anzdAsiiaessine
pumnilszney 1 dadlundnasiunasniiisugand

a

mMwdsznau 2 wasnsandsaulinnaula (Decision Tree)
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20,000-30,000 ., AT Em
132 up m 8,800 — 18,000 e S
4,900 - 8,400 -
1,700 - 3,400 3,900 - 4,800 \
Revenue Equity Number of Dividend
Shares
50,001 — 80,000 80,001 - 150,000
13-40 132 up

a2

a v VY o l:l v v A o lﬂld 1 v dl
msfasnnsuldndulaluninilsznes 2 azGuan snessuld vie saulsiinasesainainesiui
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Wansausaulssele (Revenue) iluansunaassialil srnselfuesizinagi 50,001-80,000 F1uUW Afuazes]
1 14-30 U usidnselaeei? 80,001- 150,000 A1UUW $1A1azat] 132 Lt dusinFEmndyuaanzioundnu
i ! ! ¥ Z v a o o v . °© o o ¥ a v A
g luma93zdng 3,900 - 4,800 AU Fesiassaulsaauiu (Equity) uadudalyd uasduFiniinuan
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dn lunu uidnisEvninuannzidien 8,800 — 18,000 A1uLML AzFiasiansnnEuiiuna (Dividend) Wuanadinlil
LU
o | a Y U ve a = a a
Foatienisiarsnsulifndulalaaassazidaauandluginindszney 3 nsiarsunazEuaININYes

'
o o A

sl Aie uaanzidew (Capital) uanduuen iWeyuannzidauagsendng 1,700 - 3,400 S1ULIN AxFaIRanIunma
uilssrerld (Revenue) iludLiaasiedmeldaesisimagii 50,001-80,000 411m :Asfuazati 14-30 LM Ay
&ree/ldagffi 10,001- 30,000 Fr4u s1ArazatT 31 - 46 L drareldeelil 30,001- 40,000 AruL Anazafi 47
- 65 1 daudnaelldesi 80,001- 150,000 Aruum sATesuRzAANdn 132 vl g

a

awisenau 3 AratanaansanIanulinnaula (Decision Tree) lusnaazidsan

Capital

1,700-3,400
14-30

50,001-80,000
132 up

Revenue 80,001-150,000

10,001-20,000
31-46
150,001-500,000
20,001-30,000

30,001-40,000
! ! 67-128

31-46

47-65

5.2 NRANWEAINIBTNNASALINLABSUNTTYU (Support Vector Machine, SVM)

AN DT NNEFAINATLNTT (Support Vector Machine, SVM) azugadeaangidluasinmin (Weight, W)
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A1519 2 ANUNMINYe9A9 Wl IF

AuUsau Aiudn (Weight)
AU UANTY -217.86
Rutlunaane 122.42
Nuannziien 96.45
mlagnd 16.38
mlsqridsadaugneiuansiny 9.40
9els 5.56
Aoudnauanny -1.28

5.3 NRAWEAINIT Generalized Multiple Linear Regression Model

aaldsj o o o ! o v o a2 g
FarunsvANANRUEIE NIRRT (x,, X,.X,,...) WATAAWLTANN (y) HAaTeINITIAIIzviaziily

¥
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