

การประยุกต์ใช้การวิเคราะห์เครือข่ายในการศึกษาการแข่งขัน

ความเป็นศูนย์กลางทางการบินในภูมิภาคอาเซียน

Application of Network Analysis to Study the Competition

of Aviation Hub in ASEAN

อรทัย นรรงค์ชัย¹ คอมกริช วงศ์แข² ณัฐร์ ราเรวิริญ³ และชุติญา คันธพนิต⁴
Orathai Narongchai¹ Komkrit Wongkhae² Nut Thancharoen³ Chutiya Kanthapanit⁴

บทคัดย่อ

การขยายตัวของอุตสาหกรรมการบินในอาเซียนมีบทบาทสำคัญในการส่งเสริมการเคลื่อนย้ายบ่าจจุย การผลิตและการจรัญดิบให้ทางเศรษฐกิจภายในภูมิภาค การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาความเป็นศูนย์กลางทางการบินและการแข่งขันสร้างเครือข่ายของอุตสาหกรรมการบินในอาเซียนโดยใช้ชั้้อมูลจำนวนเที่ยวบินต่อวัน ระหว่างท่าอากาศยานของประเทศในกลุ่มอาเซียน จำนวน 120 ท่าอากาศยาน จำนวน 5,093 เที่ยวบิน วัดดัชนีความเป็นศูนย์กลางโดยใช้โปรแกรม Ucinet 6.0 พบว่า ท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) ประเทศอินโดนีเซีย มีค่าความเป็นศูนย์กลาง (Degree Centrality) สูงที่สุด ท่าอากาศยานนานาชาติ Kuala Lumpur (KUL) ประเทศมาเลเซีย มีค่าความเป็นศูนย์กลางความใกล้ชิด (Closeness Centrality) สูงที่สุด และ ท่าอากาศยานนานาชาติ Manila Ninoy Aquino (MNL) ประเทศฟิลิปปินส์ มีค่าคั่นกลาง (Betweenness Centrality) มากที่สุด สนามบินที่มีการแข่งขันการสร้างเครือข่ายมากที่สุดได้แก่ ท่าอากาศยานนานาชาติ Changi (SIN) ประเทศสิงคโปร์ การศึกษาบ่าจจุยที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางของท่าอากาศยานในทิศทางเดียวกัน ได้แก่ ปริมาณเที่ยวบินที่ท่าอากาศยานต่อปี และอายุของท่าอากาศยาน ส่วนในทิศทางตรงข้าม คือ ท่าอากาศยานที่ดำเนินงานโดยรัฐบาล ส่วนการศึกษาบ่าจจุยที่มีอิทธิพลต่อระดับการแข่งขันที่วัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่าย ของสายการบินที่ท่าอากาศยาน พบว่าบ่าจจุยที่ส่งผลในทิศทางเดียวกันได้แก่ ปริมาณสายการบินที่ถือเป็นท่าอากาศยานเป็นศูนย์กลางทางการบิน ส่วนในทางตรงข้าม ได้แก่ จำนวนผู้มาใช้บริการท่าอากาศยานต่อปี และท่าอากาศยานที่ดำเนินงานโดยรัฐบาล ผลการศึกษานี้สามารถนำไปใช้เป็นแนวทางในการเพิ่มศักยภาพในการเป็นศูนย์กลางทางการบินของภูมิภาค

คำสำคัญ: การแข่งขันในอุตสาหกรรมการบิน, การวิเคราะห์เครือข่าย, ศูนย์กลางทางการบิน, อาเซียน

¹ นิสิตระดับปริญญาตรี หลักสูตรเศรษฐศาสตร์บัณฑิต คณะการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม

^{2,3,4} อาจารย์คณะกรรมการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม

¹ Bachelor's degree student, Business Economics Program, Mahasarakham business school, Mahasarakham University

^{2,3,4} Lecturer, Mahasarakham business school, Mahasarakham University

Abstract

Expansion of aviation industry in ASEAN enhances the movement of production factors and economic growth in the region. This study aimed to examine centralities and network competition of aviation industry. Data of daily aviation movement from 120 airports was used to measure centrality indices by Ucinet6.0 software. The finding revealed that Soekarno-Hatta International Airport (CGK) of Indonesia, Kuala Lumpur International Airport (KUL) and Manila Ninoy Aquino International Airport (MNL) of Philippines were the highest in term of degree, closeness and betweenness centrality in the region respectively. Singapore Changi Airport (SIN) of Singapore was the highest networking competition. Factors positively affecting degree of centrality were annual number of flights and age of airport. For overall networking competition, number of hub airlines has the same direction of completion level, but number of passengers and government operated airport were negative direction to competition. The results from this study led to beneficial guidance for implementation policies in order to enhance.

Keywords: Aviation Centrality, Aviation Competition, Network Analysis, ASEAN

1. บทนำ

อุตสาหกรรมการบินเป็นอุตสาหกรรมที่มีความสำคัญและทำรายได้เป็นจำนวนมากในหลาย ๆ ประเทศ เพราะมีความเกี่ยวข้อง และสำคัญกับอุตสาหกรรมอื่น ๆ หลายอุตสาหกรรมโดยเฉพาะอุตสาหกรรมท่องเที่ยว เมื่อมีการเปิดประชาคมเศรษฐกิจอาเซียนแล้วทุก ๆ ประเทศมีเป้าหมายที่จะเป็นศูนย์กลางของการรวมกลุ่มห้างห้ามด้านเศรษฐกิจ และด้านอื่น ๆ ดังนั้นการที่จะดึงดูดนักลงทุนและนักท่องเที่ยวได้นั้น การเดินทางที่สะดวกสบายถือเป็นสิ่งสำคัญที่จะเป็นตัวขับเคลื่อนในส่วนนี้ได้

ในทุก ๆ ประเทศต่างมีสายการบินแห่งชาติที่มีการพัฒนาเติบโตอย่างต่อเนื่อง และสายการบินต้นทุนต่ำ (Low Cost Carriers : LCCs) ที่มีการพัฒนาและเกิดขึ้นใหม่เรื่อยๆ ในรอบ 10 ปีที่ผ่านมาอุตสาหกรรมการบินมีรายได้เพิ่มขึ้นจาก 3.69 แสนล้านเหรียญสหรัฐ เป็น 7.46 แสนล้านเหรียญสหรัฐ ปัจจัยหนึ่งที่ส่งผลให้อุตสาหกรรมการบินในระดับนานาชาติเติบโตต่อเนื่องคือการเกิดขึ้นและขับเคลื่อนของสายการบินประเภทต้นทุนต่ำ ซึ่งมีส่วนแบ่งทางการตลาดถึงร้อยละ 25 และยังมีแนวโน้มที่เพิ่มขึ้นอีกในอนาคต สำหรับตลาดการบินในอาเซียนสายการบินต้นทุนต่ำมีสัดส่วนถึงร้อยละ 60 ของอุตสาหกรรมการบินในภูมิภาค (International Air Transport Association, 2015) แสดงให้เห็นว่าสายการบินต้นทุนต่ำกลไกสำคัญที่ทำให้ในภูมิภาคอาเซียนมีการเพิ่มขึ้น ความสามารถในการแข่งขันในอุตสาหกรรมการบินที่สูงขึ้นเพื่อรับมือกับการเกิดขึ้นใหม่ของสายการบินต้นทุนต่ำ หนึ่งในตัวแปรที่สำคัญในการแข่งขันคือการสร้างเครือข่ายทางการบินของสายการบิน (Barros and Wanke, 2015) และการสร้างเครือข่ายของท่าอากาศยาน (Fageda and Flores-Fillol, 2015) นอกจากนี้การวัดความเป็นศูนย์กลาง และเครือข่ายภายในอุตสาหกรรมยังสามารถที่จะกำหนดคุณภาพ หรือคุ้มค่าได้ เพื่อคาดการณ์สถานการณ์และเตรียมรับมือได้ทันต่อสภาวะการแข่งขัน (Adler and Smilowitz, 2007) ที่มีความรุนแรงขึ้นเรื่อยๆ เพื่อก้าวเข้าสู่การเป็นศูนย์กลางทางการบินของภูมิภาคต่อไป

เพื่อแสดงถึงการมีเครือข่าย และค่าความเป็นศูนย์กลางของอุตสาหกรรมการบินในภูมิภาคอาเซียน โดยใช้เครื่องมือ Network Analysis หรือ การวิเคราะห์เครือข่ายเพื่อการวิเคราะห์ความเชื่อมโยงระหว่างองค์กรกับองค์กร หรือระหว่างบุคคลกับบุคคล และมีวัตถุประสงค์และความต้องการของอย่างร่วมกัน ดำเนินกิจกรรมโดยยังคงความเป็นเอกเทศไม่เข้ามารบกวน (เสรี พงศ์พิศ, 2548) และความเป็นศูนย์กลางขององค์กร การศึกษาครั้งนี้ใช้วัดค่าความเป็นศูนย์กลางของท่าอากาศยานในภูมิภาคอาเซียน ค่าความเป็นศูนย์กลางของสายการบินในอาเซียนที่มีเที่ยวบินมากที่สุด 18 สายการบิน รวมทั้งการมีเครือข่าย เพื่อวิเคราะห์สถานการณ์การแข่งขันของอุตสาหกรรมการบินในอาเซียน

2. งานวิจัยที่เกี่ยวข้อง

บทความนิ่มเสนอวิจัยที่เกี่ยวข้องกับการแข่งขันการสร้างเครือข่ายทางการบิน ในพื้นที่การเปิดให้บริการทางการบิน Pels (2009) พบว่า การเปิดเส้นทางการบินภายใต้ข้อตกลงทวิภาคี ตลาดการบินสายการบินส่วนใหญ่ใช้วิธีการสร้างเครือข่ายเพื่อสร้างพันธมิตรรวมทั้งสายการบินต้นทุนต่าจันทำให้มีผลกำไรที่เพิ่มขึ้น นอกจากนี้ Adler and Smilowitz (2007) พบว่า การควบรวมกิจกรรม และการแข่งขันด้านราคากำให้มีบางสายการบินที่อยู่ในอุตสาหกรรมการบินต้องออกไป ส่วนผู้ที่ยังอยู่ได้นั้นต้องเร่งสร้างตัวเองให้แข็งแกร่งด้วยการสร้างเครือข่ายโดยเฉพาะเครือข่ายระหว่างประเทศ ทั้งนี้ Lin and Mantin (2015) พบว่า ท่าอากาศยานใดที่มีค่าความเป็นศูนย์กลางค่อนข้างใหญ่ซึ่งเป็นของเอกชนรัฐบาลจะมีความต้องการเข้ามามีส่วนร่วมและสนับสนุนให้เป็นศูนย์กลางทางการบินระหว่างประเทศ ในส่วนงานวิจัยที่ศึกษาปัจจัยที่มีอิทธิพลต่อการเป็นศูนย์กลางทางการบิน Redondi, Malighetti and Paleari (2011) พบว่าการเป็นศูนย์การทางการบินระหว่างประเทศขึ้นอยู่กับเวลาในการบิน ซึ่งท่าอากาศยานที่ตั้งอยู่ในภูมิภาคส่วนที่ต่างกันจะมีการแข่งขันกันการใช้เวลาจากต้นทางถึงปลายทางเดียวกัน ส่วน Takebayashi (2015) ทราบว่า ท่าอากาศยานมีการเชื่อมต่อ กับรถไฟฟ้าความเร็วสูงเป็นปัจจัยที่ส่งผลให้ท่าอากาศยานนั้นกลายเป็นศูนย์กลางทางการบินไปด้วย และ Jantachalobon, Vanichkobchinda and Suthikarnnarunai (2014) ศึกษาวิเคราะห์เครือข่ายสายการบินของท่าอากาศยานนานาชาติในภูมิภาคอาเซียน จำนวน 10 ท่าอากาศยาน พบว่า ท่าอากาศยานที่มีส่วนแบ่งทางการตลาดมากที่สุดคือ ท่าอากาศยานนานาชาติสุวรรณภูมิ (BKK) ท่าอากาศยานนานาชาติ Changi (SIN) ท่าอากาศยานนานาชาติ Kuala Lumpur (KUL) เป็นท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) และ ท่าอากาศยานนานาชาติ Manila Ninoy Aquino (MNL) ซึ่ง 3 ท่าอากาศยานแรกเป็นศูนย์กลางทางการบินที่สำคัญในภูมิภาคอาเซียน

3. วัตถุประสงค์

- เพื่อศึกษาความเป็นศูนย์กลางเครือข่ายทางการบินในอาเซียน
- เพื่อศึกษาปัจจัยที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางเครือข่ายของท่าอากาศยาน
- เพื่อศึกษาปัจจัยที่มีอิทธิพลต่อระดับการแข่งขันในการเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน

4. วิธีการศึกษาและแหล่งที่มาของข้อมูล

จากการวิจัยที่เคยมีการศึกษาผ่านมา มีการศึกษาลึกลึกลงไปที่ได้จากการสร้างเครือข่ายทางการบินและทำให้เป็นศูนย์กลางทางการบิน ส่วนปัจจัยที่ส่งผลต่อความเป็นศูนย์กลางทางการบินยังมีการศึกษาอยู่น้อย

4.1 ศึกษาความเป็นศูนย์กลางเครือข่ายทางการบินในอาเซียน

การศึกษาเรื่องศึกษาความเป็นเครือข่ายโดยใช้เมทริกซ์เครือข่ายจำนวนเที่ยวบินต่อวันระหว่างท่าอากาศยานของประเทศไทยในกลุ่มอาเซียน จำนวน 120 ท่าอากาศยาน เพื่อคำนวณค่าความเป็นศูนย์กลางโดยใช้การวิเคราะห์เครือข่าย (Network Analysis) ด้วยโปรแกรม Ucinet 6.0 คำนวณค่า Centrality (Wasserman and Faust 1994) ดังนี้

Degree centrality ศูนย์กลางในเครือข่ายนั้นคือเหล่าศูนย์รวมกิจกรรมที่มีความเชื่อมโยงเป็นส่วนใหญ่กับศูนย์รวมกิจกรรมอื่นๆ โดยค่าที่มากที่สุดคือจุดที่เป็นศูนย์กลางของเครือข่าย มีสมการทางคณิตศาสตร์ ดังนี้

$$C_D = \sum_{j=1}^n n_{ij} \quad (1)$$

Closeness centrality เป็นการวัดถึงความเร็วของศูนย์รวมกิจกรรมนึงๆ ที่จะสามารถทำการเชื่อมต่อไปยังศูนย์รวมกิจกรรมอื่นๆ โดยค่าที่มากที่สุดคือจุดที่มีความใกล้ชิดกับจุดอื่นๆ มากที่สุด มีสมการทางคณิตศาสตร์ดังนี้

$$C_C(n_i) = \sum_{j=1}^g d(n_i, n_j) \quad (2)$$

Betweenness centrality ศูนย์รวมกิจกรรมใดก็ตามซึ่งอยู่ระหว่างกลางการเชื่อมโยงของศูนย์รวมกิจกรรมอื่นๆ ก็เป็นเสมือนศูนย์รวมกิจกรรมศูนย์กลางของเครือข่าย โดยค่าที่มากที่สุดคือจุดที่มีระยะทางที่น้อยที่สุดที่เชื่อมระหว่างจุดหนึ่งกับจุดหนึ่ง มีสมการทางคณิตศาสตร์ ดังนี้

$$C_B(n_i) = \sum_{j \neq k} \frac{g_{jik}}{g_{jk}} \quad (3)$$

เมื่อ N = จำนวนเส้นทางที่ต้องการหา

n = จำนวนสนามบินที่ต้องการศึกษา

จากการพิจารณาค่าความเป็นศูนย์กลางทั้ง 3 ค่า ค่าความเป็นศูนย์กลางที่มีค่ามากแสดงว่าท่าอากาศยานนั้นมีการแข่งขันน้อย ในทางตรงข้ามค่าความเป็นศูนย์กลางที่มีค่าน้อยแสดงว่าท่าอากาศยานนั้นมีการแข่งขันมาก

4.2 แบบจำลองเพื่อศึกษาปัจจัยที่ส่งผลต่อความเป็นศูนย์กลางเครือข่ายทางการบินในอาเซียน

การศึกษาเรื่องข้อมูลเที่ยวบินต่อวันระหว่างท่าอากาศยานที่มีค่าความเป็นศูนย์กลางสูงสุด 50 อันดับแรกในอาเซียนจากวัตถุประสงค์ข้อที่ 1 เพื่อศึกษาปัจจัยที่ส่งผลต่อความเป็นศูนย์กลางเครือข่าย

ทางการบินในอาเซียน โดยมีแบบจำลองในการศึกษาดังนี้

$$LIDG_i = \beta_0 + \beta_1 AGE_i + \beta_2 TPG_i + \beta_3 AMC_i + \beta_4 RUN_i + \beta_5 OPT_i + \beta_6 HUB_i + \beta_7 RWA_i$$

เมื่อ $LIDG$ = ค่า Log ของค่าความเป็นศูนย์กลางของท่าอากาศยาน

AGE = อายุของท่าอากาศยาน (ปี)

TPG = จำนวนผู้มาใช้บริการท่าอากาศยาน ต่อปี (คน)

AMC = จำนวนเที่ยวบินที่มีการเคลื่อนย้ายที่ท่าอากาศยานต่อปี (เที่ยว)

RUN = ความยาวของรันเวย์ (ฟุต)

OPT = รัฐบาลถือหุ้นมากกว่าร้อยละ 50

และ $OPT=0$ รัฐบาลถือหุ้นน้อยกว่าร้อยละ 50

HUB = จำนวนสายการบินที่ถือเอกสารท่าอากาศยานเป็นศูนย์กลางทางการบิน (สายการบิน)

RWA = รันเวย์ยางมะตอย และ $RWA=0$ อื่นๆ

4.3 แบบจำลองเพื่อศึกษาปัจจัยที่มีอิทธิพลต่อระดับการแข่งขันที่วัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน

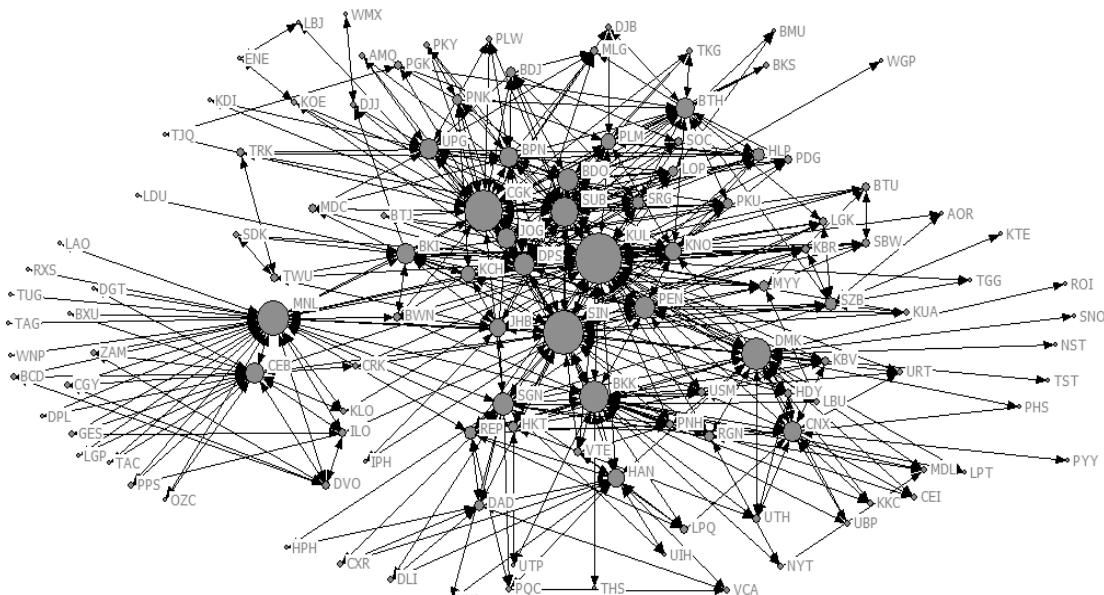
แบบจำลองนี้เลือกท่าอากาศยานที่มีค่าความเป็นศูนย์กลางสูงที่สุด 20 อันดับแรกจากวัตถุประสงค์ข้อที่ 1 และสายการบินในอาเซียนที่มีเที่ยวบินมากที่สุด 18 สายการบิน เพื่อวัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน โดยมีสูตรในการคำนวณค่าความแตกต่างดังนี้

$$IDT_i = \frac{2}{N(N-1)} \sum (IDG_i - IDG_j)_{i \neq j}$$

และใช้ตัวแปรต้นเดียวกันกับแบบจำลองที่ 1 โดยมีแบบจำลองในการศึกษาดังนี้

$$LIDT_i = \beta_0 + \beta_1 AGE_i + \beta_2 TPG_i + \beta_3 AMC_i + \beta_4 RUN_i + \beta_5 OPT_i + \beta_6 HUB_i + \beta_7 RWA_i$$

เมื่อ $LIDT = \text{ค่า Log ของค่าความเป็นศูนย์กลางของท่าอากาศยานที่มีค่าความเป็นศูนย์กลางสูงสุด 20 อันดับแรก}$


และ

5. ผลการศึกษา

5.1 ความเป็นศูนย์กลางเครือข่ายทางการบินจากการแข่งขันสร้างเครือข่ายของอุตสาหกรรมการบินในอาเซียน

ผลการศึกษาข้อมูลค่าความเป็นศูนย์กลางทางการบินโดย Network Analysis ซึ่ง ท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) ในอินโดนีเซีย มีค่าความเป็นศูนย์กลาง (Degree Centrality) สูงที่สุดเท่ากับ 442 ท่าอากาศยานนานาชาติ Kuala Lumpur (KUL) ประเทศ มาเลเซีย มีค่าความเป็นศูนย์กลางความใกล้ชิด (Closeness Centrality) สูงที่สุดเท่ากับ 61.026 และ ท่าอากาศยานนานาชาติ Manila Ninoy Aquino (MNL) ในฟิลิปปินส์ มีค่าคั่นกลาง (Betweenness Centrality) มากที่สุดเท่ากับ 3,517.879 แสดงได้

ดังรูปที่ 1 และตารางที่ 1

รูปที่ 1 แสดงการเชื่อมโยงเครือข่ายทางการบินของท่าอากาศยานในภูมิภาคอาเซียน
วัดจากขนาดของ Degree Centrality

ตาราง 1 แสดงค่าความเป็นศูนย์กลาง ค่าความเป็นศูนย์กลางประจำทิศทาง ใกล้ชิด และค่าชั้นกลางของท่าอากาศยานในอาเซียน

Airport	Degree	Closeness	Betweenness
CGK	442	57.49	2918.32
KUL	349	61.03	3261.75
DMK	285	50.64	1806.69
BKK	259	54.34	1639.61
MNL	243	54.59	3517.88
SUB	215	48.77	615.01
SIN	205	56.67	1981.47
SGD	184	51.52	1197.14
DPS	134	51.97	1200.00
HAN	124	44.07	496.83

5.2 การแข่งขันเป็นศูนย์กลางของสายการบินที่ระดับสนามบิน

สนามบินที่มีการแข่งขันการสร้างเครือข่ายของสายการบิน แสดงได้ดังตารางที่ 2

ตาราง 2 แสดงการแข่งขันการสร้างเครือข่าย

Airport	ค่าความเป็นศูนย์กลาง
SIN	0.090
BKI	0.133
PEN	0.172
KUL	0.250
BKK	0.323
HAN	0.341
CNX	0.343
SGN	0.363
HKT	0.421
CGK	0.459

จากตารางจะเห็นว่า SIN มีค่าความแตกต่างของค่าความเป็นศูนย์กลางน้อยที่สุด แสดงว่า ท่าอากาศยานนานาชาติ Changi (SIN) ประเทศไทย มีการแข่งขันการสร้างเครือข่ายมากที่สุด ล่วน CGK มีค่าความแตกต่างของค่าความเป็นศูนย์กลางมากที่สุด ซึ่งแสดงว่า ท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) การแข่งขันการสร้างเครือข่ายน้อยที่สุด

5.3 แบบจำลองเพื่อศึกษาปัจจัยที่ส่งผลต่อความเป็นศูนย์กลางเครือข่ายทางการบินในอาเซียน

ผลการประมาณค่าสมการด้วยวิธีกำลังสองน้อยที่สุด (Ordinary Least Squares : OLS) แสดงได้ดังตารางที่ 3 ซึ่งตัวแปรที่มีนัยสำคัญทางสถิติต่อค่าความเป็นศูนย์กลางเครือข่ายทางการบินในอาเซียน ได้แก่ ปริมาณเที่ยวบินที่มีการเคลื่อนย้ายที่ท่าอากาศยานต่อปี และอายุของท่าอากาศยาน ส่วนในพิเศษทางตรงข้าม คือ ประเภทของผู้ประกอบการท่าอากาศยาน มีค่าสัมประสิทธิ์เท่ากับ 1.05×10^{-5} 0.004 และ 0.360 ตามลำดับ ซึ่งอธิบายได้ว่าถ้าปริมาณเที่ยวบินที่มีการเคลื่อนย้ายที่ท่าอากาศยานต่อปีเพิ่มขึ้น 1 เที่ยวบิน จะทำให้ค่าความเป็นศูนย์กลางเพิ่มขึ้นร้อยละ 1.05×10^{-5} ถ้าอายุของท่าอากาศยานเพิ่มขึ้น 1 ปี จะทำให้ค่าความเป็นศูนย์กลางทางการบินเพิ่มขึ้นร้อยละ 0.004 และถ้าประเภทของผู้ประกอบการท่าอากาศยานเป็นรัฐบาลจะมีค่าความเป็นศูนย์กลางทางการบินน้อยกว่าประเภทเอกชนเท่ากับร้อยละ 0.360 ทั้งนี้ความผันแปรของตัวแปรอิสระสามารถอธิบายความผันแปรของค่าความเป็นศูนย์กลางทางการบินได้ร้อยละ 82.8 ซึ่งเป็นค่าที่ยอมรับได้ในแบบจำลองที่ทำการศึกษาด้วยข้อมูลภาคตัดขวาง

ตาราง 3 ผลการศึกษาปัจจัยที่ส่งผลต่อความเป็นศูนย์กลางทางการบินในอาเซียน

Variables	Unstandardized Coefficients		Standardized Coefficients	t-stat	P-value
	B	Std. Error			
Constant	2.749	0.447		6.149	0.000***
AGE	0.004	0.002	.086	2.099	0.042**
TPG	-2.21E-08	2.00E-08	.136	-1.106	0.275
ACM	1.05E-05	3.36E-06	.731	3.138	0.003***
RUN	6.33E-05	4.89E-05	-.009	1.293	0.203
OPT	-0.360	0.167	-.065	-2.153	0.037**
HUB	0.046	0.034	-.072	1.355	0.183
RWA	0.115	0.161	.126	0.720	0.475

R-Squared =0.828, Adjusted R-Squared=0.797, P-value=0.000, F-stat=26.897, Observations=48

5.4 แบบจำลองเพื่อศึกษาปัจจัยที่มีอิทธิพลต่อระดับการแข่งขันที่วัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน

เมื่อวัดค่าความเป็นศูนย์กลางแล้วจะได้ค่าความเป็นศูนย์กลางของค่าอากาศยานโดยศึกษาท่าอากาศยานที่มีค่าความเป็นศูนย์กลาง 20 อันดับแรก ศึกษาปัจจัยที่มีอิทธิพลต่อระดับการแข่งขันที่วัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน แสดงได้ดังตารางที่ 4

ตาราง 4 ปัจจัยที่มีอิทธิพลต่อระดับการแเปล่งขันที่วัดจากค่าความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยาน

Variables	Unstandardized Coefficients		Standardized Coefficients	t-stat	P-value
	B	Std. Error			
Constant	3.566	3.024		1.179	0.261
AGE	0.0009	0.010	.063	0.086	0.932
TPG	-1.63E-07	7.50E-08	-2.495	-2.166	0.051*
ACM	1.69E-05	1.39E-05	2.070	1.218	0.246
RUN	-0.0002	0.0003	.179	-0.927	0.372
OPT	-2.731	1.420	-.584	-1.923	0.078*
HUB	0.680	0.237	.382	2.866	0.014**
RWA	-0.162	0.934	.131	-0.174	0.086

R-Squared=0.616, Adjusted R-Squared=0.393, P-value=0.058, F-stat=2.758, Observations=20

จากการศึกษาพบว่าตัวแปรที่มีนัยสำคัญทางสถิติในทิศทางเดียวกัน ได้แก่ ปริมาณสายการบินที่ถือเป็นศูนย์กลางทางการบิน ส่วนในทางตรงข้าม ได้แก่ จำนวนผู้มาใช้บริการท่าอากาศยานต่อปี และ ประเภทของผู้ประกอบการท่าอากาศยาน มีค่าสัมประสิทธิ์เท่ากับ 0.680 , 1.63×10^{-7} และ 2.731 ตามลำดับ ซึ่ง อธิบายได้ว่าถ้าปริมาณสายการบินที่ถือเป็นศูนย์กลางทางการบินเพิ่มขึ้น 1 เที่ยวบิน จะทำให้ค่าความแตกต่างความเป็นศูนย์กลางเพิ่มขึ้นร้อยละ 0.680 ส่วนจำนวนผู้มาใช้บริการท่าอากาศยานต่อปีเพิ่มขึ้น 1 คน จะทำให้ค่าความเป็นศูนย์กลางลดลงร้อยละ 1.63×10^{-7} และถ้าประเภทของผู้ประกอบการท่าอากาศยานเป็นรัฐบาล มีจะค่าความเป็นศูนย์กลางทางการบินน้อยกว่าประเภทเอกชนเท่ากับร้อยละ 2.731 ทั้งนี้ความผันแปรของตัวแปร อิสระสามารถอธิบายความผันแปรของค่าความเป็นศูนย์กลางทางการบินได้ร้อยละ 61.6 ซึ่งเป็นค่าที่ยอมรับได้ใน แบบจำลองที่ทำการศึกษาด้วยข้อมูลภาคตัดขวาง

6. สรุป อภิปรายผลและข้อเสนอแนะ

การศึกษาได้ศึกษาความเป็นศูนย์กลางเครือข่ายทางการบินจากการแเปล่งขันสร้างเครือข่ายของอุตสาหกรรมการบินในอาเซียน โดยใช้ข้อมูลจำนวนเที่ยวบินต่อวันระหว่างท่าอากาศยานของประเทศในกลุ่มอาเซียน จำนวน 120 ท่าอากาศยาน ผลการศึกษาพบว่า ท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) ประเทศอินโดนีเซีย มีค่าความเป็นศูนย์กลาง (Degree Centrality) สูงที่สุด ซึ่งเป็นท่าอากาศยานหลักของอินโดนีเซีย มีประชากรมากที่สุดในอาเซียนและมีขนาดเศรษฐกิจที่ใหญ่ที่สุด ท่าอากาศยานนานาชาติ Kuala Lumpur (KUL) ประเทศมาเลเซีย มีค่าความเป็นศูนย์กลางประเภทความใกล้ชิด (Closeness Centrality) สูงที่สุด ซึ่งเป็นท่าอากาศยานหลักของมาเลเซียที่เป็นประเทศที่มีนักลงทุนและผู้ใช้แรงงานเดินทางเข้ามามากเป็นจำนวนมาก เนื่องจากเป็นประเทศที่มีพัฒนาการมากที่สุด มีความก้าวหน้าด้านเทคโนโลยีอุตสาหกรรมมากที่สุดในอาเซียน และท่าอากาศยานนานาชาติ Ninoy Aquino (MNL) ประเทศฟิลิปปินส์ มีค่าคั่นกลาง (Betweenness Centrality) มากที่สุด เป็นประเทศที่มีภูมิศาสตร์เป็นเกาะแก่งน้อย ใหญ่ และมีประชากรมากการเดินทางทางอากาศถือว่ามีความสำคัญเป็นอย่างยิ่ง โดยเฉพาะการเดินทางมายังท่าอากาศยานหลักของประเทศ ท่าอากาศยานที่มีการแเปล่งขันการสร้างเครือข่ายมากที่สุด ได้แก่ ท่าอากาศยาน

นานาชาติ Changi (SIN) ประเทศสิงคโปร์ เพราะปัจจุบันประเทศสิงคโปร์เป็นศูนย์กลางทางเศรษฐกิจของอาเซียน เน้นขยายระบบเศรษฐกิจมายังภาคบริการ จึงทำให้การแข่งขันที่ท่าอากาศยานนานาชาติ Changi (SIN) ประเทศสิงคโปร์ มีค่าสูงที่สุด สดคดล้องกับ Jantachalobon (2014) ที่กล่าวว่า ท่าอากาศยานที่มีส่วนแบ่งทางการตลาดมากที่สุดคือ ท่าอากาศยานนานาชาติสุวรรณภูมิ (BKK) ท่าอากาศยานนานาชาติ Changi (SIN) ท่าอากาศยานนานาชาติ Kuala Lumpur (KUL) เป็นท่าอากาศยานนานาชาติ Soekarno-Hatta (CGK) และท่าอากาศยานนานาชาติ Ninoy Aquino (MNL) ซึ่ง 3 ท่าอากาศยานแรกเป็นศูนย์กลางทางการบินที่สำคัญในภูมิภาคอาเซียน เพราะการที่มีส่วนแบ่งทางการตลาดมากย่อมทำให้มีการแข่งขันมาก เป็นท่าอากาศยานที่เป็นศูนย์กลางของภูมิภาค และล้วนเป็นท่าอากาศยานหลักของประเทศที่เป็นผู้นำด้านเศรษฐกิจของภูมิภาคอาเซียน

ด้านการศึกษาปัจจัยที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางเครือข่ายของท่าอากาศยาน ซึ่งเป็นการศึกษาในทุกสายการบิน พบว่า ปัจจัยที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางทางการบินที่ท่าอากาศยานต่อไป และอายุของท่าอากาศยานส่งผลในทิศทางเดียวกันกับค่าความเป็นศูนย์กลางทางการบินที่ท่าอากาศยาน เนื่องมาจาก การที่มีปัจจัยที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางทางการบินที่ท่าอากาศยาน จำนวนมาก และอยุ่ก้าวใช้งานท่าอากาศยานมากนั้นแสดงถึงการได้รับความนิยมและความเชื่อถือจากผู้ใช้บริการมาก ซึ่งแสดงว่า มีการแข่งขันที่น้อยลง ส่วนประเทศของผู้ประกอบการท่าอากาศยานส่งผลในทิศทางตรงข้าม เช่นเดียวกับปัจจัยที่มีอิทธิพลต่อระดับการแข่งขันที่วัดจากความแตกต่างของค่าความเป็นศูนย์กลางเครือข่ายของสายการบินที่ท่าอากาศยานที่วัดจากความแตกต่างของท่าอากาศยาน 20 อันดับแรก จากสายการบินของอาเซียน ที่พบว่า ประเทศของผู้ประกอบการท่าอากาศยาน สอดคล้องกับการศึกษาของ Lin (2015) ที่กล่าวว่า ท่าอากาศยานของเอกชนมีค่าความเป็นศูนย์กลางค่อนข้างมากกว่าของรัฐบาล และเป็นแรงดึงดูดให้รัฐบาลเข้ามาร่วมลงทุนซึ่งส่งผลให้มีการแข่งขันระหว่างท่าอากาศยานของรัฐบาลและของเอกชนเพิ่มมากขึ้น และจำนวนผู้มาใช้บริการท่าอากาศยานต่อปีที่เพิ่มขึ้น แล้วทำให้ค่าความเป็นศูนย์กลางของท่าอากาศยานลดลง เนื่องจาก มีการแข่งขันที่เข้มข้นขึ้นในส่วนของผู้ประกอบการท่าอากาศยาน ผู้ใช้บริการจึงมีทางเลือกมากขึ้น จึงทำให้ส่งผลในด้านตรงข้ามกับค่าความเป็นศูนย์กลาง ในส่วนของปัจจัยสายการบินที่ถือเอาท่าอากาศยานเป็นศูนย์กลางทางการบินส่งผลในทิศทางเดียวกัน ทั้งนี้เนื่องจากท่าอากาศยานใดที่ได้รับความนิยมจากสายการบินจำนวนมากถือเป็นศูนย์กลางทางการบิน สายการบินอื่นที่เข้ามายังมีอยู่อีกท่าอากาศยานนั้นเป็นศูนย์กลางของตนเพื่อโอกาสในการประกอบกิจการต่อไป

ในการศึกษาครั้งนี้มีหลายตัวแปรที่มีอิทธิพลต่อค่าความเป็นศูนย์กลางทางการบินแต่ยังไม่มีการศึกษาใดที่ สอดคล้องเนื่องจากส่วนใหญ่เป็นการศึกษาเพียงเพื่อให้รู้ว่า ท่าอากาศยาน หรือสายการบินใดเป็นศูนย์กลางเท่านั้น และมีบางการศึกษาที่เน้นเพิ่งสิ่งอำนวยความสะดวกอื่นๆ มากกว่าการสนใจในเรื่องของการพัฒนาในส่วนที่เป็นสิ่งจำเป็นกับท่าอากาศยานมากกว่าบริการเสริม เช่น Takebayashi (2015) ที่กล่าวว่า การที่ท่าอากาศยานมีการเชื่อมต่อ กับรถไฟฟ้าความเร็วสูงเป็นปัจจัยที่ส่งผลให้ท่าอากาศยานนั้นกลายเป็นศูนย์กลางทางการบินสูงขึ้น เป็นต้น

การศึกษานี้มีข้อเสนอแนะ คือ การที่จะเป็นศูนย์กลางทางการบินนั้นเกิดจากองค์ประกอบหลายส่วนรวมกัน ทั้งนี้ถ้าหากจะมีการพัฒนาในอุตสาหกรรมการบินเพื่อเป็นศูนย์กลางทางการบินทั้งในอาเซียนและประเทศไทย ควรมีการพัฒนาในทุกด้านไปพร้อมกัน ไม่เพียงแต่การสร้างเครือข่ายเท่านั้น เพื่อนำมาซึ่งความเป็นผู้นำในอุตสาหกรรมต่อไป เช่นเดียวกับท่าอากาศยานนานาชาติสุวรรณภูมิ และท่าอากาศยานนานาชาติดอนเมืองของไทย ควรที่จะมีการดึงสายการบินเข้ามาเพื่อที่จะได้เป็นศูนย์กลางทางการบิน (Hub) ที่เพิ่มขึ้น เพิ่งสิ่งอำนวยความสะดวกที่ยังไม่มีเพื่อความสะดวกรวดเร็วของผู้มาใช้บริการ เช่นรถไฟฟ้าดินความเร็วสูง เป็นต้นเพื่อที่จะเป็นศูนย์กลางทางการบินในภูมิภาคอาเซียนต่อไป

เอกสารอ้างอิง

เสวี พงศ์พิศ. เครือข่าย: ยุทธวิธีเพื่อปูประชากมเข้มข้น ชุมชนเข้มแข็ง, กรุงเทพฯ: สถาบันส่งเสริมวิสาหกิจชุมชน, 2548.

Adler, N. and K. Smilowitz *Hub-and-spoke network alliances and mergers: Price-location competition in the airline industry*. Transportation Research Part B: Methodological, 2007; 41(4), 394-409.

Barros, C. P. and P., Wanke., *An analysis of African airlines efficiency with two-stage TOPSIS and neural networks*. Journal of Air Transport Management, 2015; 44-45, 90-102.

Fageda, X. and R. Flores-Fillol., *A note on optimal airline networks under airport congestion*. Economics Letters, 2015; 128, 90-94.

Jantachalobon, N., Vanichkobchinda, P. and Suthikarnnarunai, N., *Airline Network Analysis of ASEAN International Airport Region*. The Open Transportation Journal, 2014; 8: 19-25

International Air Transport Association., *Air passenger monthly analysis*. Retrieved May 15, 2015, from <http://www.iata.org/publications/economics/Pages/Air-Passenger-Monthly-Analysis.aspx>.

Lin, M. H. and B. Mantin., *Airport privatization in international inter-hub and spoke networks*. Economics of Transportation, 2015.

Pels, E., *Network competition in the open aviation area*. Journal of Air Transport Management, 2009; 15(2), 83-89.

Redondi, R., P. Malighetti. And Paleari S., *Hub competition and travel times in the world-wide airport network*. Journal of Transport Geography, 19(6), 2011; 1260-1271.

Takebayashi, M., *Multiple hub network and high-speed railway: Connectivity, gateway, and airport leakage*. Transportation Research Part A: Policy and Practice, 2015; 79, 55-64.

Wasserman, S and Faust, K., *Social network analysis: Methods and applications*. New York, Cambridge University press, 1994.