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Abstract

	 Indoor air quality, particularly carbon dioxide (CO₂) levels, is critical to occupants’ health and comfort. 

This study developed predictive models for indoor CO₂ concentrations based on environmental variables, 

including light, temperature, humidity, and the presence of plants. Data collected from sensors within a controlled 

indoor environment were used to train predictive models using various techniques, including Artificial Neural 

Networks (ANN), k-Nearest Neighbors (k-NN), Random Forest, and Generalized Linear Models. Among standalone 

models, the ANN with a 70:30 train-test split yielded the best performance, achieving a root mean square error 

(RMSE) of 10.960, mean absolute error (MAE) of 7.300, and a coefficient of determination (R²) of 0.640. The 
study further explored ensemble methods by combining ANN, k-NN, and Generalized Linear Models through 

soft voting. The optimal ensemble configuration—ANN and k-NN with a 90:10 split ratio—achieved an RMSE 

of 11.437, MAE of 8.153, and R² of 0.650, outperforming the standalone models. In addition, the results 

demonstrated that the presence of plants within a room reduced CO₂ levels under specific conditions (20-30°C 

and 200 lux), highlighting plants’ potential to improve indoor air quality. This research suggests that ensemble 

models offer a viable solution for accurate indoor CO₂ prediction, with practical applications in indoor 

environmental management, especially when coupled with biophilic design elements such as indoor plants.
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1. Introduction

	 Maintaining good air quality in spaces regularly used by humans, especially indoor environments, is 

crucial to preventing potential health risks. Indoor plants commonly are used to reduce CO₂ concentration. 
While trees outside buildings help purify the air, indoor spaces often lack the number of plants necessary to 
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perform this function. Plants play a vital role in reducing CO₂ through photosynthesis, which is influenced by 

environmental factors. The CO₂ synthesis by plants depends on these surrounding environmental conditions, 

meaning controlling these factors can help regulate CO₂ levels in a room effectively (Jirojwong et al., 2018).

	 Sensor technology is widely used for efficient data collection, providing valuable information. Factors 

such as air temperature, humidity, light intensity, and the species of trees present affect CO₂ levels (Candanedo 

& Feldheim 2016). These factors can serve as independent variables for predicting indoor CO₂ concentrations. 
Researchers have explored various forecasting models, but their effectiveness depends on the quality of the 

dataset. Manokeaw et al. (2022) developed an Artificial Neural Network (ANN) model to predict CO₂ levels in 
an office, producing reasonably accurate results. In our study, a voting classifier that combines ANN with other 

techniques is used to improve performance, as described by Imran et al. (2022). Our paper proposes an 

improved model using soft voting with ANN.

	 Significant progress has been made in predictive atmospheric quality modeling using various techniques. 

Among these, the Voting Classifier, which aggregates predictions from multiple models, has shown promise in 

ensemble prediction models for CO₂ concentration in office rooms. CO₂ is a naturally occurring greenhouse 
gas. In small quantities, it does not pose harm, and in fact is necessary for green plant growth, but excessive 

CO₂ levels can disrupt natural processes. Chemically, CO₂ consists of one carbon atom bonded to two oxygen 

atoms and plays an essential role in plant photosynthesis. Just as humans rely on oxygen, plants depend on 

CO₂ to thrive (Riham Jaber et al., 2017). Ambient CO₂ levels typically are around 400 ppm, but indoors, they 

can reach 1,000 ppm. It is critical to keep CO₂ levels below 1,500 ppm to avoid adverse human physiological 

effects such as excessive sweating, increased heart rate, and difficulty breathing. Effective ventilation systems 

help maintain safe CO₂ levels, protecting human health and promoting growth, especially in children (Health 

Canada, 2021).

	 In recent years, various machine learning techniques have been employed to predict indoor air quality 

parameters, including CO₂ concentration. Many studies have focused on standalone models such as Artificial 

Neural Networks (ANN), k-Nearest Neighbors (k-NN), and Random Forest (RF), but ensemble learning approaches 

have shown promising results in improving prediction accuracy. This study explores the effectiveness of soft 

voting ensemble models that combine ANN with other machine learning techniques to enhance the performance 

of CO₂ prediction.
	 The main goal of this study is to develop a robust predictive model for indoor CO₂ concentration using 
ensemble learning techniques. By leveraging real-time sensor data, the proposed model aims to provide an 

accurate estimation of CO₂ levels based on environmental variables such as temperature, humidity, light 

intensity, and the presence of indoor plants.

	 The advantages of this study include:

1.	 Improved CO₂ prediction accuracy through ensemble learning techniques, enabling better air quality 

monitoring in indoor environments.

2.	 Practical implications for smart building management, where predictive models can be integrated 

into automated ventilation control systems to maintain optimal air quality.

3.	 Demonstrating the potential of Snake Plants (Sansevieria trifasciata) in reducing indoor CO₂ 
concentration, supporting sustainable and biophilic design approaches in architecture.

	 By integrating machine learning with environmental science, and design, this research provides a foundation 

for data-driven strategies to enhance indoor air quality, benefiting occupants’ health and well-being.
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2. Background

	 In this section, the factors affecting the amount of CO
2
 in ambient and room air are discussed. Subsequently, 

the machine learning models used to predict the amount of CO
2
 are described.

2.1 Factors Affecting Carbon Dioxide

	 As discussed in the previous section, plants absorb CO
2
 and produce O

2
, in a process known as 

photosynthesis. Various factors, such as light, humidity, and temperature influence the processes essential for 

photosynthesis. The following sections will provide a detailed exploration and discussion of these influential 

factors.

2.1.1 Light intensity

	 Since plants need light to produce energy during photosynthesis, light is essential. Each plant has 

different light needs, and those with greener leaves often have a higher rate of photosynthesis than those with 

less green leaves or leaves of other colors because they have greater chlorophyll content..  For outdoor plants, 

the light energy source is shortwave radiation from the sun, while for indoor plants the light energy source 

may be from the sun, from grow light bulbs, or a combination of the two. Depending on how much light a 

plant absorbs, some plants naturally increase or decrease chlorophyll. The light needs of plants can be divided 

into three categories: those that need low light are those that are grown indoors and the majority of them are 

grown in rooms or offices with low light and cooler  temperatures; those that need moderate light are those 

that tolerate sunlight and must be planted in a room or office building near a window or balcony where they 

can get some sunlight; and the last category is the plants that need high light or outdoor light. If the plant is 

in a darker area, it needs a grow light bulb to help it survive. However, the bulb should be placed a short 

distance from the plant  to avoid drying the leaves. Due to plant adaptability, the light can be used both during 

the day and at night. Bulbs producing 2,400 candelas are the ideal light value for plants. It is recommended 

to turn on the light  for short periods of time if there is a high illumination level; conversely, if there is a low 

illumination level, the light should remain on for a longer time (Dechachan, 2011; Manokeaw et al., 2022).

2.1.2 Temperature

	 One of the elements controlling plant photosynthesis is temperature. When the temperature climbs to 

25 °C, the rate of photosynthesis increases. The rate of photosynthesis decreases with increasing temperature 

over this temperature limit. Time also plays a role in high temperatures; temperatures exceeding 40 °C cause 

disturbance. The 25-30 °C temperature range is comfortable for humans and is typical for  indoor environments. 

As a result, indoor plants that photosynthesize in this range are appropriate for interior design (Rinchumphu 

et al., 2021). The interior and exterior design of a building need to be considered with respect to the suitability 

of temperature and comfort for plants and humans.

2.1.3 Water and humidity

	 Water (H
2
O) is a necessary component of plant photosynthesis. It is delivered to the leaves via the 

phloem for photosynthesis. The soil and air humidity cause the leaves’ stomata to open and close, resulting 

in CO
2
 and O

2
 diffusion. Because the stomata close during hydration, the rate of photosynthesis decreases to 

slow transpiration, resulting in a reduced capacity to take up CO
2
. Furthermore, if terrestrial plants are in a 

flooded area or soils saturated with water, the roots are deprived of O
2
, resulting in a  decreased photosynthetic 

rate (Manokeaw et al., 2022). Low humidity or a dry atmosphere causes the stomata to close to prevent water 

loss and reduces the rate of photosynthesis since CO
2
 diffusion into cells becomes limited. Furthermore, high 
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humidity induces the stomata to open, increasing the diffusion efficiency of CO
2
 into cells and hence increasing 

photosynthesis (Gubb et al., 2018).

2.1.4 Plants

	 This study collected two types of data: baseline measurements from an empty room and data with Snake 

Plants present to examine if plants help reduce CO₂ levels. The Snake Plant (Sansevieria trifasciata), specifically 

was chosen for its shade tolerance, effectiveness in air filtration, affordability, suitable size, and easy availability 

in the study area, as will be further described below.

	 The Snake Plant, scientifically named Sansevieria trifasciata and a member of the Agavaceae family, is 

known by various names. Sansevieria trifasciata is a long-lived herbaceous plant with rhizomes that spread 

along the soil surface, featuring distinctive, jointed, succulent leaves with tough or wavy edges in a variety of 

colors and patterns.

	 Adapted to arid environments, Snake Plants thrive in intense sunlight and cooler night temperatures. As 

a Crassulacean Acid Metabolism (CAM) plant, they open their stomata at night to minimize water loss, allowing 

them to absorb CO₂ for photosynthesis and capture moisture from the air. This adaptation helps them survive 

in dry conditions. Additionally, NASA has recognized Sansevieria trifasciata for its ability to absorb airborne 

pollutants, making it a highly effective plant for enhancing indoor air quality (Chiramongkolkan, 2008).

2.2 Forecasting Techniques

	 This research explores various forecasting techniques, including Artificial Neural Networks (ANN),  Random 

Forest (RF), k-Nearest Neighbor k-NN, and Generalized Linear Models (GL), as a standalone model (ANN only) 

and also within a soft voting framework (ANN+other machine learning models), to  identify the best approach 

for predicting indoor CO
2
 concentrations . The details of each technique are described in the  following sections  

(Imran et al., 2022).

2.2.1 Artificial Neural Network (ANN)

	 The Input Layer, Hidden Layer, and Output Layer comprise the three layers of ANN. The input layer 

initially receives data from numerous variables. The output layer gets input from experiences to analyze and 

locate the Hidden Layer, in which each variable is weighted to the outcome. The data are separated into two 

sets during this process: training and testing. For the most accurate  model results, the steps in finding a 

hidden layer divide the data into 70% by 30% or 80% by 20% (Panyafong et al., 2020; Polat, 2012). As a result, 

Hidden Layers often do not have a single layer; instead, the number of layers and the node can change. 

Weighting data also mimics human decision-making (Boussabaine, 1996; Ranjan, 2019). The number of hidden 

layers and nodes necessary for the data to produce acceptable  results will depend on the complexity of the 

research question at hand (Dechkamfoo et al., 2022).

2.2.2 Random Forest (RF)

	 RF is another form of the tree-based classification type. The principle of RF is based on the creation of 

various forms of decision trees; every tree has different model structures. After that, a vote for the best tree 

path is conducted. Yu et al. (2016) used the RF technique to predict the Air Quality Index (AQI) with an 

accuracy of 81.5 %. This level of accuracy is adequate to be used in a comparison with other forecasting 

techniques (Mahabub, 2020).
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2.2.3 k-Nearest Neighbors (k-NN)

	 k-NN is a widely used forecasting technique based on classification and regression methods. Rui-jun et 

al. (2019) applied an improved k-NN forecasting technique to predict air quality, addressing issues related to 

the low accuracy and efficiency of conventional air quality meters. This approach achieved an accuracy of 

94.53%, surpassing that of other established forecasting techniques (Cover & Hart, 1967).

2.2.4 Generalized Linear Model (GL)

	 The Generalized Linear Model (GL) forecasting technique is based on a linear model, where the dependent 

variable is assumed to have a linear relationship with independent variables through constant weight factors. 

Franklin et al. (2019) applied this approach to examine pregnant mothers’ exposure to indoor air pollution and 

its impact on birth outcomes. They reported that higher exposure was associated with reductions in newborn 

birth weight and head circumference, as reflected in lower z-scores.

	 These forecasting techniques are useful in identifying the most effective approach for CO₂ prediction. 
This study aims to develop optimal forecasting models to estimate indoor CO₂ levels based on environmental 

factors, including light intensity, temperature, relative humidity, and the presence of plants. Conducted in Chiang 

Mai, Thailand, this study took place in 2022.

3. Research Methodology

3.1 Data collection

	 The data collection process was conducted in a controlled indoor environment to investigate the impact 

of plants on CO₂ concentration levels (Figure 1). The experimental setup was conducted in a closed room of 

25.0 m² with a ceiling height of 3.0 m. The room contained a single window (1.5m × 1.2m), which remained 

closed during data collection to minimize external air exchange. The experiment was conducted both during 

the day (08:00–17:00) and night (18:00–06:00) for 7 days to analyze the impact of light conditions on CO₂ 
concentrations. A total of five Snake Plants (Sansevieria trifasciata) with an average height of 0.75 m were 

placed centrally in the room. No human presence was allowed during data collection to isolate the effect of 

plants on CO₂ reduction. The ventilation system was turned off to ensure CO₂ variations were solely due to 

plant activity and environmental factors.

	 To gather the necessary environmental data, four sensor modules were installed within the room to 

measure temperature (°C), relative humidity (%), light intensity (lux), and CO₂ concentration (ppm) in real-time. 

The sensors were calibrated before deployment to ensure accurate data collection. Data was recorded every 

10 minutes over a designated experimental period and the measurements were transmitted to a cloud-based 

storage system (Google Cloud Platform) for further analysis (Timprae, 2021).
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Figure 1. Data collection via sensors in the closed room.

	 The data collected from sensors included temperature, humidity, light intensity, and CO₂ concentration. 
These variables served as input features for training machine learning models, where the CO₂ concentration 
was the target variable to be predicted. The dataset  consists of 2,196 records, which  underwent preprocessing 

steps, including normalization and handling missing values before being used in model training. The models 

were trained and validated using different train-test split ratios (70:30, 80:20, and 90:10), and their performance 

was evaluated using RMSE, MAE, and R².
	 In this experiment, low-code computer software was  used for the forecasting models. There is much 

low-code software available, one of which is RapidMiner Studio, a free-to-use program with limited functionality. 

However, the functions in the free version are sufficient for analyzing primary data that were reviewed as 

accurate and precise (Chaysiri & Ngauv, 2020; László & Ghous, 2020). RapidMiner Studio is a tool for data 

analysis that can be used to analyze a wide range of data, whether it be statistical analysis, data correlation, 

or forecast modeling, in order to predict the future, including sales, customer usage,  or other  dependent  

variables of interest  (Sitthikankun et al., 2021). RapidMiner Studio also has been  applied by many users to 

create forecast models. Geetha & Nasira (2014) used RapidMiner Studio to build forecast models with an 

accuracy of 81.78% for weather forecasts, proving that the models are sufficient and may be used for forecasts 

of different weather conditions. Additionally, Çelik and Başarır (2017) used RapidMiner Studio and ANN to 

predict the prices of precious metals like gold, silver, platinum, and palladium.

3.2 Selection of the machine learning model

	 The process starts with importing data from Excel and selecting the relevant columns. Next, the role of 

each variable is defined, categorizing them as integers, real numbers, or labels. The dataset is then divided 

into training and testing subsets. In this study, three different train-test split ratios were used: 70:30, 80:20, 

and 90:10. A higher training proportion (such as 90:10) allows the model to learn from more data but may 

lead to lower generalizability, while a lower training proportion (such as 70:30) reserves more data for testing, 

which helps assess the model’s performance on unseen samples. To determine the most effective approach 

for CO₂ concentration prediction, both standalone and ensemble machine learning models were tested.
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•	 Standalone ANN Model: The Artificial Neural Network (ANN) model was used independently as a baseline. 

ANN consists of multiple interconnected layers, where each node processes input values using weighted 

connections and activation functions. The model learns through backpropagation and adjusts weights to 

minimize errors.

•	 Soft Voting Ensemble Models: To improve prediction accuracy, soft voting models were implemented, 

combining ANN with other machine learning techniques:

	◦ ANN+GL (Generalized Linear Model): Combines ANN’s non-linearity with the GL’s statistical 

regression approach.

	◦ ANN+RF (Random Forest): Uses multiple decision trees to enhance ANN’s predictive performance 

and robustness.

	◦ ANN+k-NN (k-Nearest Neighbors): Incorporates k-NN’s instance-based learning with ANN’s 

adaptive feature learning.

	 The forecasting equations also were reconstructed using Eqs. (1), (2) and (3) (Imran et al. 2022):

			   ML
1p
=ML

1
(data)	 						      (1)

			   ML
2p
=ML

2
(data)	 						      (2)

			   ML
1
+ML

2
= (ML

1p
+ML

2p
)						      (3)

	 In Eq. (1) and (2), ML
1p
 and ML

2p
 represent the predicted values generated by the ML

1
 and ML

2
 machine 

learning models. According to Eq. (3), the prediction is calculated by averaging the result from ML
1
 and ML

2
. 

After the ensemble vote, ML
1
+ML

2
 models are obtained and then tested against the test data. The trial and 

error of different split ratio values was conducted to obtain the best model results. In this experiment, the split 

ratio was divided into three types: 90:10, 80:20, and 70:30, which are the most commonly used and have been 

found to yield the best model results (Polat 2012). The modeling flow is presented in Figure 2.

Figure 2. Modeling structure.

3.3 Measurement of model accuracy

	 After training, the model’s performance was evaluated on the testing set using three error metrics: Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²). These metrics 

were chosen to assess different aspects of model accuracy, allowing for a comprehensive evaluation of the 

predictive capabilities (Imran et al., 2022).
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3.3.1 Root mean square error (RMSE)

	 Root mean square error (RMSE) measures the square root of the average squared difference between 

the predicted and actual CO₂ values. It penalizes larger errors more than smaller ones, making it useful for 

detecting significant deviations in predictions. A lower RMSE value indicates better model accuracy. The RMSE 

is calculated as:

			   					     (4)

	 where n is the number of observations for the test dataset, ŷ
i
 is the predicted CO

2
 value, and y

i
 is the 

measured value for the i-th observation.

3.3.2 Mean absolute error (MAE)

	 Mean absolute error (MAE), represents the average absolute difference between predicted and measured 

values. Unlike RMSE, MAE does not square the errors, making it less sensitive to outliers. A lower MAE value 

signifies a higher degree of prediction accuracy. The formula for MAE is:

			   					     (5)

3.3.3 Coefficient of determination (R2)

	 Coefficient of determination (R
2
) indicates how well the independent variables explain the variance in 

the dependent variable (CO₂ concentration). An R² value closer to 1 suggests that the model can accurately 

predict the CO₂ levels, whereas a lower R² value indicates a weaker model performance (Mai et al., 2021). 

The formula for R² is:

			   						     (6)

	 where ȳ
i
 is the mean (average) of the measured values, y

i
.

	 These metrics provide a robust evaluation framework: RMSE and MAE quantify the magnitude of prediction 

errors, while R² assesses the explanatory power of the model.

4. Results and Discussion

	 This section presents the CO₂ concentration values measured from sensors and analyzes the effectiveness 

of machine learning models in predicting indoor CO₂ levels. Figures 3 and 4 illustrate the relationships between 

CO₂ concentration, temperature, and relative humidity, while Table 1 quantifies these relationships using 

correlation coefficients. Table 3 compares the accuracy of different machine learning models used for CO₂ 
prediction.

4.1 CO₂ concentration analysis
	 The measured CO₂ concentration values were analyzed under different environmental conditions, including 

variations in temperature and relative humidity. Figure 3 presents the average CO₂ concentration recorded at 
different temperature levels. The data were obtained from real-time sensor recordings and analyzed to determine 
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the correlation between CO₂ concentration and temperature changes. The trend suggests that as temperature 

increases, CO₂ levels tend to decrease slightly, which may be attributed to enhanced photosynthetic activity 

by the Snake Plants.

	 Similarly, Figure 4 illustrates the relationship between CO₂ concentration and relative humidity. The data 

indicate that higher relative humidity levels are associated with lower CO₂ concentrations, potentially due to 
improved stomatal opening in plants, which facilitates CO₂ exchange.
	 The correlation analysis in Table 1 further quantifies these relationships, revealing a weak negative 

correlation between temperature and CO₂ concentration (-0.269) and a moderate positive correlation between 

relative humidity and CO₂ concentration (0.513). These findings confirm that both temperature and humidity 

play a role in influencing indoor CO₂ levels.

Figure 3. The average value of measured CO
2
 versus temperature.

Figure 4. The average value of measured CO
2
 versus relative humidity.

	 CO₂ concentration in an empty room without plants, in Figures 3 and 4 illustrate the relationships between 

CO₂ concentration, temperature, and relative humidity under different conditions, including when the room is 

empty without plants. When no plants are present, CO₂ concentration primarily is influenced by ambient 

temperature and air exchange. In an unventilated space, CO₂ tends to accumulate over time due to human 
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respiration (if occupants are present) or minimal air circulation. However, as temperature increases, CO₂ levels 
exhibit a slight decline. This can be attributed to the expansion of air at higher temperatures, leading to 

increased air movement and slight diffusion of CO₂ away from the measurement zone. Additionally, at higher 

temperatures, buoyancy-driven air currents may enhance ventilation, resulting in gradual CO₂ reduction (Ateş 
& Khameneh, 2023). When the plants are absent, the relationship between CO₂ and humidity is largely dictated 

by room ventilation and external air infiltration. Higher humidity levels often coincide with higher CO₂ 
concentrations, particularly in enclosed environments where moisture retention correlates with limited air 

exchange. The presence of humidity may reduce CO₂ diffusion efficiency, leading to localized CO₂ buildup. 
Conversely, when humidity decreases, the room’s air tends to be drier, which can facilitate better CO₂ dispersion 
and slight reductions in measured concentration (Jiang et al., 2024).

	 These trends indicate that in an empty room without plants, CO₂ accumulation primarily is affected by 

air circulation, temperature-driven buoyancy effects, and humidity-induced air retention. In contrast, when plants 

are present, their photosynthetic activity contributes to a reduction in CO2 concentration, altering these 

relationships.

Table 1. Correlation Coefficients between Temperature, Relative Humidity, and CO2 (p < 0.001).

Variables Temperature (°C) Relative humidity (%) CO
2
 (ppm)

Temperature (°C) 1

Relative humidity (%) –0.155 1

CO
2
 (ppm) –0.269 0.513 1

4.2 Model performance evaluation

	 To assess the accuracy of CO₂ prediction models, different machine learning approaches were tested. 

Figure 5 shows the architecture of ANN to predict the concentration of CO2 (Manokeaw et al., 2022). The 

details of ANN used in this study are listed in Table 2. The activation functions used in the hidden layers were 

a sigmoid function while a linear function was used in the output layer. Table 3 summarizes the RMSE, MAE, 

and R² values for each model, providing a comparative analysis of their performance. Among standalone 

models, the ANN model with a 70:30 train-test split achieved the best results, with an RMSE of 14.003, MAE 

of 10.869, and R² of 0.397.

Figure 5. The architecture of ANN model used in this study (Plant presence, 0 = No; 1 = yes).
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		           Table 2. Details of ANN Input, Values of Weights and Bias
1
.

Layer Node Activation Function Weights Bias

Hidden 1 1 Sigmoid T (°C): 1.474,

RH (%): -2.482,  

lux: 0.829, 

Plant Presence: -0.435

-1.354

2 Sigmoid T (°C): 0.251,

RH (%): -0.453, 

lux: -0.576,

Plant Presence: 0.999

0.039

Hidden 2 1 Sigmoid Node 1: -1.998, 

Node 2: -0.995

-0.216

Output 1 Linear (Regression) Node 1: 1.444 0.049

(Threshold)

1
 Abbreviations: T (°C) = Temperature in degrees Celsius, RH (%) = Relative Humidity in percentage, lux = Illuminance in lux (unit 

of light intensity) and Plant Presence = Presence of plant (0 = No, 1 = Yes).

	 However, ensemble models improved prediction accuracy. The best-performing model, ANN+k-NN (90:10 

split), achieved an RMSE of 11.437, MAE of 8.153, and R² of 0.650, demonstrating notable improvement over 

standalone models.

Table 3. Comparison of RMSE, MAE, and R2 for CO2 Standalone and Ensemble Models.

Split ratio Model RMSE MAE R
2

90:10 ANN 15.050 11.049 0.349

ANN+k-NN 11.437 8.153 0.650

ANN+RF 13.205 9.715 0.513

ANN+GL 15.384 11.647 0.319

80:20 ANN 14.031 10.779 0.376

ANN+k-NN 11.194 8.238 0.602

ANN+RF 12.483 9.529 0.505

ANN+GL 14.260 11.056 0.354

70:30 ANN 14.003 10.869 0.397

ANN+k-NN 11.218 8.432 0.616

ANN+RF 12.508 9.590 0.519

ANN+GL 14.089 11.064 0.386

	 Figure 6 compares the percentage error among three models: the best soft voting model (ANN+k-NN), 

the standalone ANN model, and the least effective model (ANN+GL). The figure shows that the ANN+k-NN 

model consistently maintains errors within a 10% range, whereas the other two models exhibit larger deviations, 

exceeding 15% in some cases. This confirms the robustness of the ANN+k-NN model in predicting CO₂ 
concentrations.
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Figure 6. Comparison of percentage error among the best model (ANN+k-NN), the standalone ANN model, 

and the least effective model (ANN+GL).

4.3 Impact of Indoor Plants on CO₂ Reduction

	 To investigate the effect of indoor plants on CO₂ concentration, comparisons were made between rooms 

with and without Snake Plants. Figure 7 shows that the presence of Snake Plants led to a reduction in CO₂ 
levels, particularly within the 20–30°C temperature range under a light intensity of 200 lux. The greatest reduction 

was observed at approximately 28.5°C, suggesting that this temperature range is optimal for CO₂ absorption 
by the plants.

	 These findings support the hypothesis that indoor plants can effectively reduce CO₂ concentration under 
specific environmental conditions. However, at temperatures exceeding 30°C, the CO₂ reduction rate declined, 
indicating that extremely high temperatures may limit plant mitigation efficiency.

4.4 Limitations, Assumptions and Sensitivity Analysis

	 While the results provide valuable insights into indoor CO₂ dynamics, some limitations and assumptions 

must be considered:

1.	The dataset was collected in a controlled environment with no human presence, which may not fully 

reflect real-world indoor conditions where human respiration contributes to CO₂ levels.
2.	Only one plant species (Snake Plant) was tested. Future studies should explore different plant types 

to determine their relative effectiveness in CO₂ absorption.
3.	The experiment was conducted in a room with a single closed window (1.5m × 1.2m), minimizing 

external air exchange. If the room had multiple windows or active ventilation, CO₂ levels might fluctuate 

differently.

4.	The impact of plant size and quantity was not fully explored. If a larger number of Snake Plants was 

placed in the room, CO₂ uptake might have been greater. Conversely, if the plant size were smaller, 

the CO₂ reduction effect might be diminished.

	 Additionally, if some assumptions change, such as using a room without windows or altering the number 

of plants, the CO₂ reduction dynamics would likely differ. For example:
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1.	 If the room had no windows and limited air circulation, the CO₂ reduction effect from plants might 

become more pronounced, as there would be less external air exchange.

2.	 If the number of Snake Plants were doubled, CO₂ absorption might increase proportionally, but only 

up to a certain threshold, beyond which the effect could plateau due to environmental limitations.

3.	 Conversely, if fewer plants were used, the CO₂ reduction effect would be lower, possibly resulting 

in higher CO₂ levels in the room atmosphere over time.

	 Despite these limitations, this study demonstrates the feasibility of using ensemble machine learning 

models for accurate CO₂ prediction and highlights the practical benefits of incorporating indoor plants for air 
quality management.

Figure 7. Comparison of CO₂ forecasts from the ANN+k-NN model between plant and non-plant conditions.

5. Conclusions

	 This study developed a machine learning model to predict CO₂ concentrations based on data collected 
from an empty room using four sensors to measure relative humidity, temperature, light intensity, and CO₂ 
levels. Standalone ANN models and soft voting models (ANN+GL, ANN+RF, and ANN+k-NN) were tested across 

split ratios of 70:30, 80:20, and 90:10, with their accuracy evaluated using RMSE, MAE, and R² metrics.

	 The key findings are as follows:

1.	 Soft voting improved the R² efficiency of the standalone ANN model. The standalone ANN models 

yielded R² values of 0.349, 0.376, and 0.397 for split ratios of 70:30, 80:20, and 90:10, respectively. 
The best-performing soft voting model, ANN+k-NN, achieved R² values of 0.650, 0.602, and 0.616 
for these split ratios, demonstrating notable improvement over the standalone ANN.

2.	 A plot of measured versus predicted CO₂ data shows that the ANN+k-NN model maintained a 

percentage error within 15%, with most errors  being less than 10%. This indicates that ensemble 

learning techniques can enhance prediction accuracy and stability.

3.	 Using the ANN+k-NN model to forecast CO₂ levels in rooms with and without Snake Plants revealed 

that the presence of Snake Plants effectively reduced CO₂ in the temperature range of 20–30°C, 

under light intensity of 200 lux. The CO₂ reduction was most pronounced at temperatures around 

28.5°C.
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5.1 Benefits of Snake Plants for Indoor CO₂ Reduction

	 The results highlight the  potentially important role of Snake Plants in improving indoor air quality by 

reducing CO₂ levels. The key benefits include:
•	 Snake Plants actively absorb CO₂ during the night through Crassulacean Acid Metabolism (CAM) 

photosynthesis, making them particularly effective in enclosed spaces with minimal ventilation.

•	 The ability of Snake Plants to survive in low light conditions makes them ideal for indoor environments 

such as offices, classrooms, and residential spaces where CO₂ levels can accumulate.

•	 By lowering CO₂concentration, Snake Plants may contribute to improved cognitive function, enhanced 

productivity, and overall occupant well-being, particularly in high-occupancy areas.

5.2 Benefits of the Machine Learning Models

	 The application of machine learning models in this study demonstrates their potential in predicting and 

managing indoor CO₂ levels. The key benefits include:
•	 The ANN+k-NN model provided a more accurate and robust prediction of CO₂ concentration compared 

to standalone models, highlighting the advantage of ensemble learning.

•	 These models can be integrated into smart indoor air quality management systems, allowing for real-

time monitoring and optimization of ventilation strategies based on predicted CO₂ trends. Moreover, 

they offer promising applications when embedded within Building Information Modeling (BIM) and 

digital twin frameworks for enhanced building performance analysis and decision-making.

•	 The ability to predict CO₂ fluctuations based on environmental factors (temperature, humidity, and 

light) enables proactive interventions, such as adjusting HVAC (Heating, Ventilation, and Air Conditioning) 

settings or recommending indoor plant placements for air purification.

	 These findings suggest that a combination of machine learning models and biophilic design strategies, 

such as incorporating Snake Plants in indoor environments, can enhance indoor air quality management. Future 

research should explore the impact of different plant species and environmental conditions to further refine 

predictive models for CO₂ optimization in various indoor settings.

6. Practical Applications and Future Work

	 The findings from this study provide valuable insights into indoor air quality management and predictive 

modeling for CO₂ concentration. The developed machine learning models and experimental results have multiple 

real-world applications, particularly in smart buildings, environmental monitoring, and health-focused indoor 

spaces.

6.1 Applications in Smart Buildings

	 The CO₂ prediction models developed in this study can be integrated into smart building management 

systems to optimize ventilation strategies. By predicting indoor CO₂ concentration based on temperature, 

humidity, and light levels, automated HVAC systems can adjust airflow and fresh air intake in real-time to 

maintain air quality.
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	 For example:

•	 In office buildings, where high occupancy levels contribute to CO₂ buildup, predictive models can 

help dynamically control air circulation to enhance worker productivity.

•	 In schools and universities, CO₂ prediction models can be used to regulate classroom ventilation, 

ensuring that students and teachers have access to fresh air to improve cognitive performance.

•	 In residential smart homes, AI-driven automation can use CO₂ forecasts to activate air purifiers, open 
windows, or adjust plant positioning to optimize indoor air quality.

6.2 Environmental and Health Benefits

	 Reducing indoor CO₂ improves human well-being. Prolonged exposure to elevated CO₂ levels (above 
1,000 ppm) can cause headaches, drowsiness, and decreased cognitive function. The ability to predict and 

manage CO₂ levels ensures healthier indoor environments, benefiting long-term health.

	 Indoor plants as natural air purifiers. The study demonstrates that Snake Plants can effectively reduce 

CO₂ concentration, particularly at temperatures around 28.5°C. This supports the implementation of biophilic 

design strategies in urban architecture, where plants are integrated into indoor spaces to enhance air quality.

Energy efficiency improvements. By using machine learning models to predict CO₂ fluctuations, HVAC systems 

can be operated more efficiently, reducing unnecessary energy consumption while maintaining optimal air 

quality.

6.3 Future Research Directions

	 While this study demonstrates the effectiveness of ensemble machine learning models in CO₂ prediction, 
further research can extend its applications in the following ways:

1.	Expanding plant species analysis: Future work should investigate how different plant types contribute 

to CO₂ absorption under varying environmental conditions.

2.	 Incorporating real-time human activity data: Adding human occupancy levels as a factor can improve 

model accuracy in predicting CO₂ fluctuations in dynamic indoor environments.

3.	Deploying IoT-based smart monitoring systems: Integrating AI models with IoT sensors can enable 

real-time CO₂ tracking and automated decision-making for ventilation control.

	 By combining advanced machine learning techniques with sustainable indoor environmental design, this 

research contributes to the development of intelligent air quality management solutions that enhance human 

health and energy efficiency.
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