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Abstract

Indoor air quality, particularly carbon dioxide (CO,) levels, is critical to occupants’ health and comfort.
This study developed predictive models for indoor CO, concentrations based on environmental variables,
including light, temperature, humidity, and the presence of plants. Data collected from sensors within a controlled
indoor environment were used to train predictive models using various techniques, including Artificial Neural
Networks (ANN), k-Nearest Neighbors (k-NN), Random Forest, and Generalized Linear Models. Among standalone
models, the ANN with a 70:30 train-test split yielded the best performance, achieving a root mean square error
(RMSE) of 10.960, mean absolute error (MAE) of 7.300, and a coefficient of determination (R?) of 0.640. The
study further explored ensemble methods by combining ANN, k-NN, and Generalized Linear Models through
soft voting. The optimal ensemble configuration—ANN and k-NN with a 90:10 split ratio—achieved an RMSE
of 11.437, MAE of 8.153, and R? of 0.650, outperforming the standalone models. In addition, the results
demonstrated that the presence of plants within a room reduced CO, levels under specific conditions (20-30°C
and 200 lux), highlighting plants’ potential to improve indoor air quality. This research suggests that ensemble
models offer a viable solution for accurate indoor CO, prediction, with practical applications in indoor

environmental management, especially when coupled with biophilic design elements such as indoor plants.
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1. Introduction
Maintaining good air quality in spaces regularly used by humans, especially indoor environments, is
crucial to preventing potential health risks. Indoor plants commonly are used to reduce CO, concentration.

While trees outside buildings help purify the air, indoor spaces often lack the number of plants necessary to
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perform this function. Plants play a vital role in reducing CO; through photosynthesis, which is influenced by
environmental factors. The CO, synthesis by plants depends on these surrounding environmental conditions,
meaning controlling these factors can help regulate CO, levels in a room effectively (Jirojwong et al., 2018).

Sensor technology is widely used for efficient data collection, providing valuable information. Factors
such as air temperature, humidity, light intensity, and the species of trees present affect CO, levels (Candanedo
& Feldheim 2016). These factors can serve as independent variables for predicting indoor CO, concentrations.
Researchers have explored various forecasting models, but their effectiveness depends on the quality of the
dataset. Manokeaw et al. (2022) developed an Atrtificial Neural Network (ANN) model to predict CO; levels in
an office, producing reasonably accurate results. In our study, a voting classifier that combines ANN with other
techniques is used to improve performance, as described by Imran et al. (2022). Our paper proposes an
improved model using soft voting with ANN.

Significant progress has been made in predictive atmospheric quality modeling using various techniques.
Among these, the Voting Classifier, which aggregates predictions from multiple models, has shown promise in
ensemble prediction models for CO, concentration in office rooms. CO; is a naturally occurring greenhouse
gas. In small quantities, it does not pose harm, and in fact is necessary for green plant growth, but excessive
CO; levels can disrupt natural processes. Chemically, CO, consists of one carbon atom bonded to two oxygen
atoms and plays an essential role in plant photosynthesis. Just as humans rely on oxygen, plants depend on
CO; to thrive (Riham Jaber et al., 2017). Ambient CO, levels typically are around 400 ppm, but indoors, they
can reach 1,000 ppm. It is critical to keep CO, levels below 1,500 ppm to avoid adverse human physiological
effects such as excessive sweating, increased heart rate, and difficulty breathing. Effective ventilation systems
help maintain safe CO, levels, protecting human health and promoting growth, especially in children (Health
Canada, 2021).

In recent years, various machine learning techniques have been employed to predict indoor air quality
parameters, including CO, concentration. Many studies have focused on standalone models such as Artificial
Neural Networks (ANN), k-Nearest Neighbors (k-NN), and Random Forest (RF), but ensemble learning approaches
have shown promising results in improving prediction accuracy. This study explores the effectiveness of soft
voting ensemble models that combine ANN with other machine learning techniques to enhance the performance
of CO, prediction.

The main goal of this study is to develop a robust predictive model for indoor CO, concentration using
ensemble learning techniques. By leveraging real-time sensor data, the proposed model aims to provide an
accurate estimation of CO, levels based on environmental variables such as temperature, humidity, light
intensity, and the presence of indoor plants.

The advantages of this study include:

1. Improved CO, prediction accuracy through ensemble learning techniques, enabling better air quality

monitoring in indoor environments.

2. Practical implications for smart building management, where predictive models can be integrated

into automated ventilation control systems to maintain optimal air quality.

3. Demonstrating the potential of Snake Plants (Sansevieria trifasciata) in reducing indoor CO,

concentration, supporting sustainable and biophilic design approaches in architecture.

By integrating machine learning with environmental science, and design, this research provides a foundation

for data-driven strategies to enhance indoor air quality, benefiting occupants’ health and well-being.
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2. Background
In this section, the factors affecting the amount of CO2 in ambient and room air are discussed. Subsequently,

the machine learning models used to predict the amount of CO2 are described.

2.1 Factors Affecting Carbon Dioxide

As discussed in the previous section, plants absorb C02 and produce 02, in a process known as
photosynthesis. Various factors, such as light, humidity, and temperature influence the processes essential for
photosynthesis. The following sections will provide a detailed exploration and discussion of these influential
factors.
2.1.1 Light intensity

Since plants need light to produce energy during photosynthesis, light is essential. Each plant has
different light needs, and those with greener leaves often have a higher rate of photosynthesis than those with
less green leaves or leaves of other colors because they have greater chlorophyll content.. For outdoor plants,
the light energy source is shortwave radiation from the sun, while for indoor plants the light energy source
may be from the sun, from grow light bulbs, or a combination of the two. Depending on how much light a
plant absorbs, some plants naturally increase or decrease chlorophyll. The light needs of plants can be divided
into three categories: those that need low light are those that are grown indoors and the majority of them are
grown in rooms or offices with low light and cooler temperatures; those that need moderate light are those
that tolerate sunlight and must be planted in a room or office building near a window or balcony where they
can get some sunlight; and the last category is the plants that need high light or outdoor light. If the plant is
in a darker area, it needs a grow light bulb to help it survive. However, the bulb should be placed a short
distance from the plant to avoid drying the leaves. Due to plant adaptability, the light can be used both during
the day and at night. Bulbs producing 2,400 candelas are the ideal light value for plants. It is recommended
to turn on the light for short periods of time if there is a high illumination level; conversely, if there is a low
illumination level, the light should remain on for a longer time (Dechachan, 2011; Manokeaw et al., 2022).
2.1.2 Temperature

One of the elements controlling plant photosynthesis is temperature. When the temperature climbs to
25 °C, the rate of photosynthesis increases. The rate of photosynthesis decreases with increasing temperature
over this temperature limit. Time also plays a role in high temperatures; temperatures exceeding 40 °C cause
disturbance. The 25-30 °C temperature range is comfortable for humans and is typical for indoor environments.
As a result, indoor plants that photosynthesize in this range are appropriate for interior design (Rinchumphu
et al., 2021). The interior and exterior design of a building need to be considered with respect to the suitability
of temperature and comfort for plants and humans.
2.1.3 Water and humidity

Water (HZO) is a necessary component of plant photosynthesis. It is delivered to the leaves via the
phloem for photosynthesis. The soil and air humidity cause the leaves’ stomata to open and close, resulting
in CO2 and O2 diffusion. Because the stomata close during hydration, the rate of photosynthesis decreases to
slow transpiration, resulting in a reduced capacity to take up COZ. Furthermore, if terrestrial plants are in a
flooded area or soils saturated with water, the roots are deprived of 02, resulting in a decreased photosynthetic
rate (Manokeaw et al., 2022). Low humidity or a dry atmosphere causes the stomata to close to prevent water

loss and reduces the rate of photosynthesis since CO2 diffusion into cells becomes limited. Furthermore, high
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humidity induces the stomata to open, increasing the diffusion efficiency of CO2 into cells and hence increasing
photosynthesis (Gubb et al., 2018).
2.1.4 Plants

This study collected two types of data: baseline measurements from an empty room and data with Snake
Plants present to examine if plants help reduce CO, levels. The Snake Plant (Sansevieria trifasciata), specifically
was chosen for its shade tolerance, effectiveness in air filtration, affordability, suitable size, and easy availability
in the study area, as will be further described below.

The Snake Plant, scientifically named Sansevieria trifasciata and a member of the Agavaceae family, is
known by various names. Sansevieria trifasciata is a long-lived herbaceous plant with rhizomes that spread
along the soil surface, featuring distinctive, jointed, succulent leaves with tough or wavy edges in a variety of
colors and patterns.

Adapted to arid environments, Snake Plants thrive in intense sunlight and cooler night temperatures. As
a Crassulacean Acid Metabolism (CAM) plant, they open their stomata at night to minimize water loss, allowing
them to absorb CO, for photosynthesis and capture moisture from the air. This adaptation helps them survive
in dry conditions. Additionally, NASA has recognized Sansevieria trifasciata for its ability to absorb airborne

pollutants, making it a highly effective plant for enhancing indoor air quality (Chiramongkolkan, 2008).

2.2 Forecasting Techniques

This research explores various forecasting techniques, including Artificial Neural Networks (ANN), Random
Forest (RF), k-Nearest Neighbor k-NN, and Generalized Linear Models (GL), as a standalone model (ANN only)
and also within a soft voting framework (ANN+other machine learning models), to identify the best approach
for predicting indoor CO2 concentrations . The details of each technique are described in the following sections
(Imran et al., 2022).

2.2.1 Artificial Neural Network (ANN)

The Input Layer, Hidden Layer, and Output Layer comprise the three layers of ANN. The input layer
initially receives data from numerous variables. The output layer gets input from experiences to analyze and
locate the Hidden Layer, in which each variable is weighted to the outcome. The data are separated into two
sets during this process: training and testing. For the most accurate model results, the steps in finding a
hidden layer divide the data into 70% by 30% or 80% by 20% (Panyafong et al., 2020; Polat, 2012). As a resullt,
Hidden Layers often do not have a single layer; instead, the number of layers and the node can change.
Weighting data also mimics human decision-making (Boussabaine, 1996; Ranjan, 2019). The number of hidden
layers and nodes necessary for the data to produce acceptable results will depend on the complexity of the
research question at hand (Dechkamfoo et al., 2022).

2.2.2 Random Forest (RF)

RF is another form of the tree-based classification type. The principle of RF is based on the creation of
various forms of decision trees; every tree has different model structures. After that, a vote for the best tree
path is conducted. Yu et al. (2016) used the RF technique to predict the Air Quality Index (AQI) with an
accuracy of 81.5 %. This level of accuracy is adequate to be used in a comparison with other forecasting

techniques (Mahabub, 2020).
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2.2.3 k-Nearest Neighbors (k-NN)

k-NN is a widely used forecasting technique based on classification and regression methods. Rui-jun et
al. (2019) applied an improved k-NN forecasting technique to predict air quality, addressing issues related to
the low accuracy and efficiency of conventional air quality meters. This approach achieved an accuracy of
94.53%, surpassing that of other established forecasting techniques (Cover & Hart, 1967).

2.2.4 Generalized Linear Model (GL)

The Generalized Linear Model (GL) forecasting technique is based on a linear model, where the dependent
variable is assumed to have a linear relationship with independent variables through constant weight factors.
Franklin et al. (2019) applied this approach to examine pregnant mothers’ exposure to indoor air pollution and
its impact on birth outcomes. They reported that higher exposure was associated with reductions in newborn
birth weight and head circumference, as reflected in lower z-scores.

These forecasting techniques are useful in identifying the most effective approach for CO, prediction.
This study aims to develop optimal forecasting models to estimate indoor CO, levels based on environmental
factors, including light intensity, temperature, relative humidity, and the presence of plants. Conducted in Chiang

Mai, Thailand, this study took place in 2022.

3. Research Methodology
3.1 Data collection

The data collection process was conducted in a controlled indoor environment to investigate the impact
of plants on CO, concentration levels (Figure 1). The experimental setup was conducted in a closed room of
25.0 m? with a ceiling height of 3.0 m. The room contained a single window (1.5m x 1.2m), which remained
closed during data collection to minimize external air exchange. The experiment was conducted both during
the day (08:00-17:00) and night (18:00-06:00) for 7 days to analyze the impact of light conditions on CO,
concentrations. A total of five Snake Plants (Sansevieria trifasciata) with an average height of 0.75 m were
placed centrally in the room. No human presence was allowed during data collection to isolate the effect of
plants on CO, reduction. The ventilation system was turned off to ensure CO, variations were solely due to
plant activity and environmental factors.

To gather the necessary environmental data, four sensor modules were installed within the room to
measure temperature (°C), relative humidity (%), light intensity (lux), and CO, concentration (ppm) in real-time.
The sensors were calibrated before deployment to ensure accurate data collection. Data was recorded every
10 minutes over a designated experimental period and the measurements were transmitted to a cloud-based

storage system (Google Cloud Platform) for further analysis (Timprae, 2021).
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Sensor 1

4.5000 m

Figure 1. Data collection via sensors in the closed room.

The data collected from sensors included temperature, humidity, light intensity, and CO, concentration.
These variables served as input features for training machine learning models, where the CO, concentration
was the target variable to be predicted. The dataset consists of 2,196 records, which underwent preprocessing
steps, including normalization and handling missing values before being used in model training. The models
were trained and validated using different train-test split ratios (70:30, 80:20, and 90:10), and their performance
was evaluated using RMSE, MAE, and R2

In this experiment, low-code computer software was used for the forecasting models. There is much
low-code software available, one of which is RapidMiner Studio, a free-to-use program with limited functionality.
However, the functions in the free version are sufficient for analyzing primary data that were reviewed as
accurate and precise (Chaysiri & Ngauv, 2020; Laszl6 & Ghous, 2020). RapidMiner Studio is a tool for data
analysis that can be used to analyze a wide range of data, whether it be statistical analysis, data correlation,
or forecast modeling, in order to predict the future, including sales, customer usage, or other dependent
variables of interest (Sitthikankun et al., 2021). RapidMiner Studio also has been applied by many users to
create forecast models. Geetha & Nasira (2014) used RapidMiner Studio to build forecast models with an
accuracy of 81.78% for weather forecasts, proving that the models are sufficient and may be used for forecasts
of different weather conditions. Additionally, Celik and Basarir (2017) used RapidMiner Studio and ANN to

predict the prices of precious metals like gold, silver, platinum, and palladium.

3.2 Selection of the machine learning model

The process starts with importing data from Excel and selecting the relevant columns. Next, the role of
each variable is defined, categorizing them as integers, real numbers, or labels. The dataset is then divided
into training and testing subsets. In this study, three different train-test split ratios were used: 70:30, 80:20,
and 90:10. A higher training proportion (such as 90:10) allows the model to learn from more data but may
lead to lower generalizability, while a lower training proportion (such as 70:30) reserves more data for testing,
which helps assess the model’s performance on unseen samples. To determine the most effective approach

for CO, concentration prediction, both standalone and ensemble machine learning models were tested.
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e Standalone ANN Model: The Artificial Neural Network (ANN) model was used independently as a baseline.
ANN consists of multiple interconnected layers, where each node processes input values using weighted
connections and activation functions. The model learns through backpropagation and adjusts weights to
minimize errors.

e Soft Voting Ensemble Models: To improve prediction accuracy, soft voting models were implemented,
combining ANN with other machine learning techniques:

© ANN+GL (Generalized Linear Model): Combines ANN’s non-linearity with the GL’s statistical
regression approach.

©  ANN+RF (Random Forest): Uses multiple decision trees to enhance ANN’s predictive performance
and robustness.

©  ANN+k-NN (k-Nearest Neighbors): Incorporates k-NN’s instance-based learning with ANN’s
adaptive feature learning.

The forecasting equations also were reconstructed using Egs. (1), (2) and (3) (Imran et al. 2022):

ML1P=ML1(data) (1)

ML =ML (data) 2)
2p 2

ML +ML =X (ML +ML ) 3)
1 2 2 p 2p

In Eq. (1) and (2), ML1P and Msz represent the predicted values generated by the ML1 and ML2 machine
learning models. According to Eq. (3), the prediction is calculated by averaging the result from ML1 and MLZ.
After the ensemble vote, ML1+ML2 models are obtained and then tested against the test data. The trial and
error of different split ratio values was conducted to obtain the best model results. In this experiment, the split
ratio was divided into three types: 90:10, 80:20, and 70:30, which are the most commonly used and have been

found to yield the best model results (Polat 2012). The modeling flow is presented in Figure 2.

-
)

Figure 2. Modeling structure.

3.3 Measurement of model accuracy

After training, the model’s performance was evaluated on the testing set using three error metrics: Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R?). These metrics
were chosen to assess different aspects of model accuracy, allowing for a comprehensive evaluation of the

predictive capabilities (Imran et al., 2022).
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3.3.1 Root mean square error (RMSE)
Root mean square error (RMSE) measures the square root of the average squared difference between
the predicted and actual CO, values. It penalizes larger errors more than smaller ones, making it useful for

detecting significant deviations in predictions. A lower RMSE value indicates better model accuracy. The RMSE

1 -~
RMSE = |30, (9 — )? (4)

where n is the number of observations for the test dataset, Vi is the predicted CO2 value, and y, is the

is calculated as:

measured value for the i-th observation.
3.3.2 Mean absolute error (MAE)

Mean absolute error (MAE), represents the average absolute difference between predicted and measured
values. Unlike RMSE, MAE does not square the errors, making it less sensitive to outliers. A lower MAE value

signifies a higher degree of prediction accuracy. The formula for MAE is:

1 ~
MAE = -3 19 = il (5)

3.3.3 Coefficient of determination (R2)

Coefficient of determination (R?) indicates how well the independent variables explain the variance in
the dependent variable (CO, concentration). An R? value closer to 1 suggests that the model can accurately
predict the CO, levels, whereas a lower R? value indicates a weaker model performance (Mai et al., 2021).

The formula for R? is:

S, (vi—9)?

R2=1-
s, (rev)

where )7i is the mean (average) of the measured values, y.
These metrics provide a robust evaluation framework: RMSE and MAE quantify the magnitude of prediction

errors, while R? assesses the explanatory power of the model.

4. Results and Discussion

This section presents the CO, concentration values measured from sensors and analyzes the effectiveness
of machine learning models in predicting indoor CO, levels. Figures 3 and 4 illustrate the relationships between
CO, concentration, temperature, and relative humidity, while Table 1 quantifies these relationships using
correlation coefficients. Table 3 compares the accuracy of different machine learning models used for CO,

prediction.

4.1 CO, concentration analysis
The measured CO; concentration values were analyzed under different environmental conditions, including
variations in temperature and relative humidity. Figure 3 presents the average CO, concentration recorded at

different temperature levels. The data were obtained from real-time sensor recordings and analyzed to determine
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the correlation between CO, concentration and temperature changes. The trend suggests that as temperature
increases, CO; levels tend to decrease slightly, which may be attributed to enhanced photosynthetic activity
by the Snake Plants.

Similarly, Figure 4 illustrates the relationship between CO, concentration and relative humidity. The data
indicate that higher relative humidity levels are associated with lower CO, concentrations, potentially due to
improved stomatal opening in plants, which facilitates CO, exchange.

The correlation analysis in Table 1 further quantifies these relationships, revealing a weak negative
correlation between temperature and CO, concentration (-0.269) and a moderate positive correlation between
relative humidity and CO, concentration (0.513). These findings confirm that both temperature and humidity

play a role in influencing indoor CO; levels.

550
500

450
® Plant

490 A No plant

CO2 actual data (ppm)

350
23 24 25 26 27 28 29

Temperature (°C)

Figure 3. The average value of measured CO2 versus temperature.

550

500

450
® Plant

400 A No plant
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30 40 50 60 70

Relative Humidity (%)

Figure 4. The average value of measured CO2 versus relative humidity.

CO; concentration in an empty room without plants, in Figures 3 and 4 illustrate the relationships between
CO, concentration, temperature, and relative humidity under different conditions, including when the room is
empty without plants. When no plants are present, CO, concentration primarily is influenced by ambient

temperature and air exchange. In an unventilated space, CO, tends to accumulate over time due to human
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respiration (if occupants are present) or minimal air circulation. However, as temperature increases, CO, levels
exhibit a slight decline. This can be attributed to the expansion of air at higher temperatures, leading to
increased air movement and slight diffusion of CO, away from the measurement zone. Additionally, at higher
temperatures, buoyancy-driven air currents may enhance ventilation, resulting in gradual CO, reduction (Ates
& Khameneh, 2023). When the plants are absent, the relationship between CO, and humidity is largely dictated
by room ventilation and external air infiltration. Higher humidity levels often coincide with higher CO,
concentrations, particularly in enclosed environments where moisture retention correlates with limited air
exchange. The presence of humidity may reduce CO, diffusion efficiency, leading to localized CO; buildup.
Conversely, when humidity decreases, the room’s air tends to be drier, which can facilitate better CO, dispersion
and slight reductions in measured concentration (Jiang et al., 2024).

These trends indicate that in an empty room without plants, CO, accumulation primarily is affected by
air circulation, temperature-driven buoyancy effects, and humidity-induced air retention. In contrast, when plants
are present, their photosynthetic activity contributes to a reduction in CO2 concentration, altering these

relationships.

Table 1. Correlation Coefficients between Temperature, Relative Humidity, and CO2 (p < 0.001).

Variables Temperature (°C) Relative humidity (%) CO2 (ppm)
Temperature (°C) 1

Relative humidity (%) -0.155 1

CO, (ppm) -0.269 0.513 1

4.2 Model performance evaluation

To assess the accuracy of CO, prediction models, different machine learning approaches were tested.
Figure 5 shows the architecture of ANN to predict the concentration of CO2 (Manokeaw et al., 2022). The
details of ANN used in this study are listed in Table 2. The activation functions used in the hidden layers were
a sigmoid function while a linear function was used in the output layer. Table 3 summarizes the RMSE, MAE,
and R? values for each model, providing a comparative analysis of their performance. Among standalone
models, the ANN model with a 70:30 train-test split achieved the best results, with an RMSE of 14.003, MAE
of 10.869, and R? of 0.397.

T(°C) O
RH (%) O O
Illuminance (lux)o = O

Plant presence
(0Oor1) O
Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 5. The architecture of ANN model used in this study (Plant presence, 0 = No; 1 = yes).
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Table 2. Details of ANN Input, Values of Weights and Bias'.

Layer Node Activation Function | Weights Bias
Hidden 1 1 Sigmoid T (°C): 1.474, -1.354
RH (%): -2.482,
lux: 0.829,

Plant Presence: -0.435

2 Sigmoid T (°C): 0.251, 0.039
RH (%): -0.453,

lux: -0.576,

Plant Presence: 0.999

Hidden 2 1 Sigmoid Node 1: -1.998, -0.216
Node 2: -0.995
Output 1 Linear (Regression) | Node 1: 1.444 0.049
(Threshold)

" Abbreviations: T (°C) = Temperature in degrees Celsius, RH (%) = Relative Humidity in percentage, lux = llluminance in lux (unit
of light intensity) and Plant Presence = Presence of plant (0 = No, 1 = Yes).

However, ensemble models improved prediction accuracy. The best-performing model, ANN+k-NN (90:10
split), achieved an RMSE of 11.437, MAE of 8.153, and R? of 0.650, demonstrating notable improvement over

standalone models.

Table 3. Comparison of RMSE, MAE, and R2 for CO2 Standalone and Ensemble Models.

Split ratio Model RMSE MAE R?
90:10 ANN 15.050 11.049 0.349
ANN+k-NN 11.437 8.153 0.650
ANN-+RF 13.205 9.715 0.513
ANN+GL 15.384 11.647 0.319
80:20 ANN 14.031 10.779 0.376
ANN-+k-NN 11.194 8.238 0.602
ANN+RF 12.483 9.529 0.505
ANN+GL 14.260 11.056 0.354
70:30 ANN 14.003 10.869 0.397
ANN-+k-NN 11.218 8.432 0.616
ANN+RF 12.508 9.590 0.519
ANN+GL 14.089 11.064 0.386

Figure 6 compares the percentage error among three models: the best soft voting model (ANN+k-NN),
the standalone ANN model, and the least effective model (ANN+GL). The figure shows that the ANN+k-NN
model consistently maintains errors within a 10% range, whereas the other two models exhibit larger deviations,
exceeding 15% in some cases. This confirms the robustness of the ANN+k-NN model in predicting CO;

concentrations.
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Figure 6. Comparison of percentage error among the best model (ANN+k-NN), the standalone ANN model,

and the least effective model (ANN+GL).

4.3 Impact of Indoor Plants on CO, Reduction

To investigate the effect of indoor plants on CO, concentration, comparisons were made between rooms
with and without Snake Plants. Figure 7 shows that the presence of Snake Plants led to a reduction in CO,
levels, particularly within the 20-30°C temperature range under a light intensity of 200 lux. The greatest reduction
was observed at approximately 28.5°C, suggesting that this temperature range is optimal for CO, absorption
by the plants.

These findings support the hypothesis that indoor plants can effectively reduce CO, concentration under
specific environmental conditions. However, at temperatures exceeding 30°C, the CO, reduction rate declined,

indicating that extremely high temperatures may limit plant mitigation efficiency.

4.4 Limitations, Assumptions and Sensitivity Analysis

While the results provide valuable insights into indoor CO, dynamics, some limitations and assumptions

must be considered:

1. The dataset was collected in a controlled environment with no human presence, which may not fully
reflect real-world indoor conditions where human respiration contributes to CO, levels.

2. Only one plant species (Snake Plant) was tested. Future studies should explore different plant types
to determine their relative effectiveness in CO, absorption.

3. The experiment was conducted in a room with a single closed window (1.5m x 1.2m), minimizing
external air exchange. If the room had multiple windows or active ventilation, CO; levels might fluctuate
differently.

4. The impact of plant size and quantity was not fully explored. If a larger number of Snake Plants was
placed in the room, CO, uptake might have been greater. Conversely, if the plant size were smaller,
the CO; reduction effect might be diminished.

Additionally, if some assumptions change, such as using a room without windows or altering the number

of plants, the CO, reduction dynamics would likely differ. For example:
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If the room had no windows and limited air circulation, the CO, reduction effect from plants might
become more pronounced, as there would be less external air exchange.

If the number of Snake Plants were doubled, CO, absorption might increase proportionally, but only
up to a certain threshold, beyond which the effect could plateau due to environmental limitations.
Conversely, if fewer plants were used, the CO, reduction effect would be lower, possibly resulting

in higher CO; levels in the room atmosphere over time.

Despite these limitations, this study demonstrates the feasibility of using ensemble machine learning

models for accurate CO, prediction and highlights the practical benefits of incorporating indoor plants for air

quality management.
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Figure 7. Comparison of CO, forecasts from the ANN+k-NN model between plant and non-plant conditions.

5. Conclusions

This study developed a machine learning model to predict CO, concentrations based on data collected

from an empty room using four sensors to measure relative humidity, temperature, light intensity, and CO,
levels. Standalone ANN models and soft voting models (ANN+GL, ANN+RF, and ANN+k-NN) were tested across
split ratios of 70:30, 80:20, and 90:10, with their accuracy evaluated using RMSE, MAE, and R? metrics.

The key findings are as follows:

1.

Soft voting improved the R? efficiency of the standalone ANN model. The standalone ANN models
yielded R? values of 0.349, 0.376, and 0.397 for split ratios of 70:30, 80:20, and 90:10, respectively.
The best-performing soft voting model, ANN+k-NN, achieved R? values of 0.650, 0.602, and 0.616
for these split ratios, demonstrating notable improvement over the standalone ANN.

A plot of measured versus predicted CO, data shows that the ANN+k-NN model maintained a
percentage error within 15%, with most errors being less than 10%. This indicates that ensemble
learning techniques can enhance prediction accuracy and stability.

Using the ANN+k-NN model to forecast CO, levels in rooms with and without Snake Plants revealed
that the presence of Snake Plants effectively reduced CO, in the temperature range of 20-30°C,
under light intensity of 200 lux. The CO, reduction was most pronounced at temperatures around
28.5°C.
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5.1 Benefits of Snake Plants for Indoor CO. Reduction
The results highlight the potentially important role of Snake Plants in improving indoor air quality by
reducing CO; levels. The key benefits include:
e Snake Plants actively absorb CO, during the night through Crassulacean Acid Metabolism (CAM)
photosynthesis, making them particularly effective in enclosed spaces with minimal ventilation.
e The ability of Snake Plants to survive in low light conditions makes them ideal for indoor environments
such as offices, classrooms, and residential spaces where CO, levels can accumulate.
e By lowering CO,concentration, Snake Plants may contribute to improved cognitive function, enhanced

productivity, and overall occupant well-being, particularly in high-occupancy areas.

5.2 Benefits of the Machine Learning Models

The application of machine learning models in this study demonstrates their potential in predicting and

managing indoor CO; levels. The key benefits include:

e The ANN+k-NN model provided a more accurate and robust prediction of CO, concentration compared
to standalone models, highlighting the advantage of ensemble learning.

e These models can be integrated into smart indoor air quality management systems, allowing for real-
time monitoring and optimization of ventilation strategies based on predicted CO, trends. Moreover,
they offer promising applications when embedded within Building Information Modeling (BIM) and
digital twin frameworks for enhanced building performance analysis and decision-making.

e The ability to predict CO, fluctuations based on environmental factors (temperature, humidity, and
light) enables proactive interventions, such as adjusting HVAC (Heating, Ventilation, and Air Conditioning)
settings or recommending indoor plant placements for air purification.

These findings suggest that a combination of machine learning models and biophilic design strategies,

such as incorporating Snake Plants in indoor environments, can enhance indoor air quality management. Future
research should explore the impact of different plant species and environmental conditions to further refine

predictive models for CO, optimization in various indoor settings.

6. Practical Applications and Future Work

The findings from this study provide valuable insights into indoor air quality management and predictive
modeling for CO, concentration. The developed machine learning models and experimental results have multiple
real-world applications, particularly in smart buildings, environmental monitoring, and health-focused indoor

spaces.

6.1 Applications in Smart Buildings

The CO, prediction models developed in this study can be integrated into smart building management
systems to optimize ventilation strategies. By predicting indoor CO, concentration based on temperature,
humidity, and light levels, automated HVAC systems can adjust airflow and fresh air intake in real-time to

maintain air quality.
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For example:

e In office buildings, where high occupancy levels contribute to CO, buildup, predictive models can
help dynamically control air circulation to enhance worker productivity.

e In schools and universities, CO, prediction models can be used to regulate classroom ventilation,
ensuring that students and teachers have access to fresh air to improve cognitive performance.

e In residential smart homes, Al-driven automation can use CO, forecasts to activate air purifiers, open

windows, or adjust plant positioning to optimize indoor air quality.

6.2 Environmental and Health Benefits

Reducing indoor CO, improves human well-being. Prolonged exposure to elevated CO, levels (above
1,000 ppm) can cause headaches, drowsiness, and decreased cognitive function. The ability to predict and
manage CO, levels ensures healthier indoor environments, benefiting long-term health.

Indoor plants as natural air purifiers. The study demonstrates that Snake Plants can effectively reduce
CO, concentration, particularly at temperatures around 28.5°C. This supports the implementation of biophilic
design strategies in urban architecture, where plants are integrated into indoor spaces to enhance air quality.
Energy efficiency improvements. By using machine learning models to predict CO, fluctuations, HVAC systems
can be operated more efficiently, reducing unnecessary energy consumption while maintaining optimal air

quality.

6.3 Future Research Directions
While this study demonstrates the effectiveness of ensemble machine learning models in CO, prediction,
further research can extend its applications in the following ways:
1. Expanding plant species analysis: Future work should investigate how different plant types contribute
to CO, absorption under varying environmental conditions.
2. Incorporating real-time human activity data: Adding human occupancy levels as a factor can improve
model accuracy in predicting CO, fluctuations in dynamic indoor environments.
3. Deploying loT-based smart monitoring systems: Integrating Al models with loT sensors can enable
real-time CO, tracking and automated decision-making for ventilation control.
By combining advanced machine learning techniques with sustainable indoor environmental design, this
research contributes to the development of intelligent air quality management solutions that enhance human

health and energy efficiency.
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