

Structural relationships of Corporate Social Responsibility, Environment, Governance, Quality of Work Life, Job Satisfaction, Trust, Employee Engagement: A Case Study of the Logistics & Transportation Multinational Company in Bangkok, Thailand

Sutthatip Kamthornphiphatthanakul¹, Narintorn Somthong² and Poonsak Sangsunt³

Art of Innovation Management Department, Rajapark Institute, Bangkok, Thailand¹

Business Administration, Ramkhamhaeng University, Bangkok, Thailand^{2,3}

Corresponding Author Email: ksutthatip@gmail.com¹

Received: November 7, 2024

Revised: December 26, 2024

Accepted: December 29, 2024

Abstract

This study investigates the structural relationships between corporate social responsibility (CSR), environmental, governance, quality of work life (QWL), job satisfaction, trust, and employee engagement within a Bangkok-based logistics & transportation multinational company. This research is a quantitative research. The sample consists of 190 employees from logistics and transportation companies that have been employed for more than one year. They were purposively selected. The research instrument was a questionnaire. The statistics used for data analysis were partial least squares structural equation modeling (PLS-SEM).

The findings highlight that CSR and strong governance frameworks positively influence QWL, which in turn enhances job satisfaction, trust, and employee engagement. Trust is identified as a critical mediator, fostering both employee commitment and a deeper connection to organizational goals. Furthermore, environmental responsibility aligns employee values with organizational ethics, enhancing overall job satisfaction. The study underscores the importance of integrated CSR and governance strategies to support a sustainable, engaged, and highly motivated workforce. These insights provide a comprehensive framework for organizations aiming to achieve long-term success through a holistic approach to employee well-being and organizational ethics.

Keywords: CSR, Environment, Governance, QWL, Employee Engagement

Introduction

In today's dynamic business environment, corporate social responsibility (CSR), environment, and governance are no longer peripheral elements but central to organizational

strategy and Employee Engagement. As companies strive to achieve sustainable growth, the alignment of CSR practices with robust governance frameworks has become a critical factor in shaping organizational culture and enhancing employee satisfaction. Research demonstrates that organizations committed to CSR not only benefit society but also cultivate a more supportive and engaging work environment, positively impacting employee trust and retention (Carroll & Shabana, 2010). These strategic CSR initiatives also resonate with the modern workforce, which increasingly values ethical practices and transparency in their employers.

Governance plays an essential role in building a transparent and accountable organizational structure. By fostering trust through ethical decision-making and consistent policies, effective governance enhances employee commitment and contributes to a high Quality of Work Life (QWL). A strong QWL is linked to employee job satisfaction, engagement, and organizational loyalty, positioning organizations that prioritize these elements for better performance outcomes (Hackman & Oldham, 1976; Mayer et al., 1995). Additionally, the focus on environmental responsibility as part of CSR further deepens employees' sense of purpose and connection to their workplace, as it aligns organizational values with employee beliefs, enhancing both motivation and satisfaction (Elkington, 1997).

This study examines the structural relationships between CSR, governance, QWL, job satisfaction, trust, and employee engagement in a logistics & transportation multinational company based in Bangkok, Thailand. By analyzing data from 190 employees, given the environmental impact and regulatory challenges faced by this industry, a deeper understanding of CSR and governance's role in employee engagement is crucial. Insights from this research can guide industry-specific strategies that align business goals with social and environmental responsibilities, enhancing the company's reputation and competitive edge. Understanding how these factors are interrelated allows organizations to create a "virtuous cycle" where CSR and governance initiatives lead to higher employee engagement, which in turn reinforces CSR efforts. This sustainable approach benefits both employees and the organization, contributing to long-term success and resilience in the competitive global logistics and transportation market (Schaufeli & Bakker, 2004).

Research Objective

This research is to investigate the structural relationships among corporate social responsibility (CSR), environment, governance, quality of work life (QWL), job satisfaction, trust, and employee engagement within a logistics & transportation multinational corporation in Bangkok, Thailand

Literature Review

This section explores the theoretical foundations surrounding corporate social responsibility (CSR), environment, governance, quality of work life (QWL), job satisfaction, trust,

and employee engagement. Each component represents a critical aspect of modern organizational management, influencing not only workplace dynamics but also contributing to the sustainable development of the organization. Understanding the theoretical interplay between these factors provides a framework for analyzing how integrated CSR and governance practices can lead to higher employee engagement and organizational commitment.

Corporate Social Responsibility (CSR) and Environment

Corporate Social Responsibility (CSR) has evolved beyond philanthropy, now encompassing ethical, environmental, and social dimensions embedded in business operations. CSR seeks to balance organizational profit with a commitment to societal welfare and environmental stewardship (Carroll, 1991). It serves as a strategic tool for differentiating companies in competitive markets, enhancing corporate reputation, and promoting employee loyalty (McWilliams & Siegel, 2001). CSR practices, particularly those involving environment, demonstrate an organization's commitment to reducing its ecological footprint and fostering a sustainable future (Elkington, 1997). The "Triple Bottom Line" approach advocates for companies to consider social and environmental impacts alongside financial performance, emphasizing that environmental responsibility is both a risk management strategy and a driver of long-term value (Hart & Milstein, 2003). Studies indicate that CSR and environment initiatives can positively impact employee satisfaction and engagement, as employees tend to feel more aligned with an organization that shares their values of social responsibility (Orlitzky et al., 2011). The integration of environmental initiatives within CSR has become increasingly important, with research showing that organizations committed to sustainability are more resilient, adaptable, and better able to meet stakeholder expectations in a changing global environment (Porter & Kramer, 2006).

Governance and Quality of Work Life (QWL)

Governance encompasses the systems, policies, and structures that direct an organization towards ethical conduct, transparency, and accountability. Effective governance is essential for embedding CSR and sustainability practices within organizational frameworks, ensuring these practices are not merely symbolic but are genuinely impactful (Aguilera et al., 2007). Good governance creates a culture of trust, which is vital for employee motivation and organizational commitment (Mayer et al., 1995). Transparent and ethical decision-making processes strengthen employee confidence in organizational leadership, promoting higher levels of employee engagement and job satisfaction. The concept of Quality of Work Life (QWL) is closely related to governance practices, as it reflects the degree to which employees feel their work environment supports their well-being, security, and professional growth. A high QWL is associated with increased job satisfaction, reduced turnover, and greater organizational commitment (Hackman & Oldham, 1976). Research demonstrates that organizations with strong governance are better able to create a supportive work environment by implementing policies such as fair compensation, career development opportunities, and

work-life balance initiatives (Pfeffer, 2018). These factors not only improve employee morale but also contribute to a sustainable, engaged workforce.

Job Satisfaction, Trust, and Employee Engagement

Job satisfaction and employee engagement are critical components of organizational success. Job satisfaction reflects employees' overall attitudes towards their jobs, encompassing intrinsic elements like meaningful work and extrinsic factors such as pay and job security (Locke, 1976). High job satisfaction is strongly linked to employee engagement, a broader construct that includes the emotional and cognitive involvement employees have with their organization and work (Kahn, 1990). Engaged employees demonstrate higher productivity, commitment, and willingness to contribute to organizational goals, making engagement a significant predictor of business performance (Schaufeli & Bakker, 2004). Trust within an organization plays a vital role in fostering employee engagement. Employees who trust their leaders and feel secure in the organization are more likely to be engaged, motivated, and committed (Robinson, 1996). Trust is both a consequence and a driver of high QWL, as employees who perceive their work environment as fair and supportive are more likely to have high levels of trust in their organization (Podsakoff et al., 1996). Studies show that when organizations prioritize employee well-being through strong QWL practices and transparent governance, trust flourishes, leading to enhanced employee engagement and lower turnover (Laschinger et al., 2001).

Interrelationships and Holistic Organizational Impact

The interconnectedness of CSR, governance, QWL, job satisfaction, trust, and employee engagement forms a cyclical and mutually reinforcing system that impacts organizational effectiveness. CSR initiatives, particularly those related to environment, align employee values with organizational practices, fostering a sense of pride and commitment (Schaufeli & Bakker, 2004). Effective governance structures ensure these initiatives are rooted in accountability and transparency, creating a work environment conducive to high QWL, which subsequently leads to increased job satisfaction, trust, and engagement. This holistic approach to organizational management underscores the need for integrated strategies that simultaneously address ethical, environmental, and employee-centric goals.

In summary, the theoretical relationships between CSR, Governance, QWL, Job Satisfaction, Trust, and Employee Engagement emphasize the importance of a cohesive and responsible management approach. By adopting strategies that consider these factors in unison, organizations can cultivate a sustainable and engaged workforce, ultimately achieving long-term organizational success.

Hypothesis

Therefore, another hypothesis of the current study is follows:

H1: Governance positively influences the environment.

- H2: Governance positively influences the quality of work life.
- H3: Governance positively influences the corporate social responsibility.
- H4: Environment positively influences the corporate social responsibility.
- H5: Quality of work life positively influences the job satisfaction.
- H6: Quality of work life positively influences the employee engagement.
- H7: Quality of work life positively influences the trust.
- H8: Job satisfaction positively influences the trust.
- H9: Job satisfaction positively influences the employee engagement.
- H10: Trust positively influences the employee engagement.

Methodology

Sample and Data Collection

The study sample consists of 190 employees from a logistics & transportation multinational company with over one year of employment. To determine sample size, the “10-times rule” was applied (Hair et al., 2011; Peng & Lai, 2012). A purposive probability sampling method with cluster random sampling was used to select companies that align with research objectives, ensuring a diverse representation across job roles. Following this, simple random sampling or convenience sampling was employed within each cluster to obtain a complete sample.

Measurement Instrument

Data was collected through a 52-item questionnaire designed to measure Quality of Work Life (QWL), Job Satisfaction, Trust, and Employee Engagement. For QWL, 42 items were adopted from previous studies (Chaiprasit & Santidhirakul, 2011; Klein et al., 2019), covering six dimensions: organizational transparency, living standards, education, time use, health, and work environment. Job Satisfaction, Trust, and Employee Engagement were measured with 3, 2, and 5 items respectively, adapted from validated sources (Klein et al., 2019; Nyhan & Marlow, 1997; Osborne & Hammoud, 2017). Responses were rated on a 5-point Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

Data Analysis

Data was analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with Smart PLS version 4.1.0.8 to validate the model’s measurement and structural components (Henseler, 2017; Hair et al., 2017).

Results and Findings

The majority of respondents in this study are male (66.3%) and from Generation Y (52.1%). Most hold a Bachelor’s degree (57.9%), with 27.4% earning over 60,000 Baht. A large portion are in executive positions (75.8%) and have more than 10 years of work experience (33.2%). Additionally, 46.8% are married with children.

Evaluation of Measurement Model

The evaluation included tests for convergent validity (CV), internal reliability, and discriminant validity (DV) (Hair et al., 2016). Item reliability was assessed using factor loadings, with all reflective indicators above 0.70 (Hair et al., 2017). Composite reliability (CR) and Average Variance Extracted (AVE) further confirmed reliability and consistency of the constructs. As shown in Table 1, CR values for all constructs exceeded the 0.8 threshold (Hair et al., 2016), with scores for CSR (0.9681), ENV (0.9694), GGV (0.9419), QWL (0.9315), JST (0.8946), TRT (0.9141), and EEG (0.9110), indicating high internal consistency. Additionally, AVE scores were above 0.50, supporting the CV of the measures (Hair et al., 2017).

Table 1 Results of items loading, AVE, and CR (n=190)

Construct	Items	Loading	Cronbach's alpha	Rho_A	CR	AVE
CSR	CSR1	0.9699	0.9341	0.9352	0.9681	0.9382
	CSR2	0.9673				
ENV	ENV1	0.9479	0.9578	0.9598	0.9694	0.8881
	ENV2	0.9393				
	ENV3	0.9684				
	ENV4	0.9131				
GGV	GGV1	0.8271	0.9171	0.9238	0.9419	0.8025
	GGV2	0.8842				
	GGV3	0.9436				
	GGV4	0.9239				
QWL	QWL1	0.8588	0.9082	0.9127	0.9315	0.7313
	QWL2	0.8949				
	QWL3	0.8397				
	QWL4	0.8241				
	QWL5	0.8566				
JST	JS1	0.8996	0.8221	0.8228	0.8946	0.7394
	JS2	0.8797				
	JS3	0.7969				
TRT	TR1	0.9124	0.8122	0.8142	0.9141	0.8418
	TR2	0.9225				
EEG	EE1	0.7503	0.8776	0.8807	0.9110	0.6724
	EE2	0.8422				
	EE3	0.8436				
	EE4	0.8527				
	EE5	0.8067				

Notes: CSR – Corporate Social Responsibility; ENV – Environment; GGV – Governance; QWL – Quality of Work Life; JST – Job Satisfaction; TRT – Trust; EEG – Employee Engagement

Discriminant validity is checked through the Fornell-Larker criterion (1981), cross loading of the observed variables shown in table 2, further, the variance inflation factor (VIF) as 1.000 – 2.2903; so VIF < 3 no multicollinearity (Hair et al., 2016).

Table 2 Fornell-Larker criterion

Construct	CSR	ENV	EEG	GGV	JST	QWL	TRT
CSR	0.9686						
ENV	0.8512	0.9424					
EEG	0.5644	0.5683	0.8200				
GGV	0.6995	0.6579	0.6977	0.8958			
JST	0.3914	0.3889	0.7023	0.5215	0.8599		
QWL	0.6568	0.6629	0.8044	0.8482	0.6397	0.8552	
TRT	0.4461	0.4494	0.7035	0.5445	0.5517	0.6804	0.9175

Notes: M - Mean; S - SD; CSR – Corporate Social Responsibility; ENV – Environment; GGV – Governance; QWL – Quality of Work Life; JST – Job Satisfaction; TRT – Trust;

EEG – Employee Engagement

Structural Model and Hypothesis Testing

The structural model examines the constructs' predictive capabilities and causal relationships (Hair et al., 2017). The bootstrapping method was employed to estimate the statistical implication of the hypothesized form (Carrión et al., 2017). Hair et al. (2016) propose that besides portraying significant connections, researchers report R^2 , and effect size (f^2).

In Table 3, the result of Model found that R^2 values were 0.7589, 0.7343, 0.7194, 0.4859, 0.4329, and 0.4092 for CSR, EEG, QWL, TRT, ENV, and JST respectively. All R^2 were above 0.25 confirming the validity of the models.

The six R^2 values could be implied as follows; (1) ENV and GGV could explain the variance of CSR by 75.89%; (2) TRT and JST could explain the variance of EEG by 73.43%; (3) GGV could explain the variance of QWL by 71.94%; (4) JS and QWL could explain the variance of TRT by 48.59%; (5) GGV could explain the variance of ENV by 43.29%; and (6) QWL could explain the variance of JST by 40.92%.

Following, f^2 indicates effect size 0.35, 0.15, and 0.02 respectively. It stated that large, medium, and small effect (Cohen, 1988). The results of f^2 demonstrate that GGV large effect on QWL ($f^2 = 2.5638$), and ENV ($f^2 = 0.7633$), ENV large effect on CSR ($f^2 = 1.1177$), QWL large effect on JST ($f^2 = 0.6927$), EEG ($f^2 = 0.3671$), and TRT ($f^2 = 0.3530$). In contrast, JST medium effect on EEG ($f^2 = 0.1574$), whereas GGV effect on CSR ($f^2 = 0.1423$), TRT effect on EEG ($f^2 = 0.1041$), and JST effect on TRT ($f^2 = 0.0446$) to small effect.

Table 3 Results of R² and f²

Construct	R ²	CSR	ENV	EEG	f ²	JST	QWL	TRT
CSR	0.7589							
ENV	0.4329		1.1177					
GGV			0.1423	0.7633			2.5638	
JST	0.4092				0.1574			0.0446
QWL	0.7194				0.3671	0.6927		0.3530
TRT	0.4859				0.1041			
EEG	0.7343							

The SRMR is defined as the difference between the observed correlation and the model implied correlation matrix. Thus, it allows assessing the average magnitude of the discrepancies between observed and expected correlations as an absolute measure of (model) fit criterion. A value less than 0.08 (Hu & Bentler, 1999) are considered a good fit. Henseler et al. (2014) introduce the SRMR as a goodness of fit measure for PLS-SEM that can be used to avoid model misspecification. The goodness of fit model using the SRMR criteria meets the less than 0.08 (Hu & Bentler, 1999). The results SRMR value of 0.0655 that indicated this model is good fit.

Overall fit of measurement was measured by Goodness of fit index (GoF), which indicated the reliability of the measurement model (Henseler & Sarstedt, 2013). The calculation shown in Table 4; presented the GoF value of 0.6879, which indicated the high level of well fit of the overall model (Tenenhaus et al., 2004; Wetzels et al. 2009).

Table 4 Goodness of Fit Index (GoF)

Construct	AVE	R ²
CSR	0.9382	0.7589
ENV	0.8881	0.4329
EEG	0.6724	0.7343
GGV	0.8025	
JST	0.7394	0.4092
QWL	0.7313	0.7194
TRT	0.8418	0.4859
GoF	0.6879	

Remark: *Goodness of Fit (GoF) = $\sqrt{((\text{Average AVE}) \times (\text{Average R}^2))}$

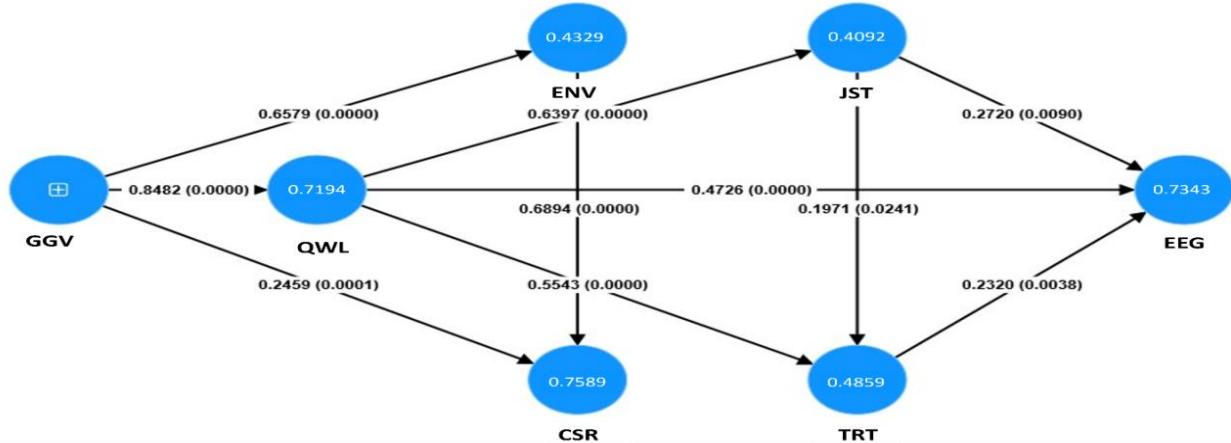


Figure 1 Structural Model Assessment

The results of structural model assessment shown in Figure 1 and table 5. All ten hypotheses are supported by the data. The stronger the path coefficient number is closer to 1, meaning that the influence of the independent variable is the stronger it affects the dependent variable (Ghozali & Latan, 2015). Values of 0.67, 0.33, and 0.19 indicate a strong, moderate, and weak model (Jogiyanto, 2011). The results show that GGV has strong significant impact on QWL ($\beta = 0.8482^{***}$), ENV has strong significant impact on CSR ($\beta = 0.6894^{***}$),

GGV has moderate significant impact on ENV ($\beta = 0.6579^{***}$), QWL has moderate significant impact on JST ($\beta = 0.6397^{***}$), TRT ($\beta = 0.5543^{***}$), EEG ($\beta = 0.4726^{***}$), GGV has weak significant impact on CSR ($\beta = 0.2459^{***}$), JST has weak significant impact on EEG ($\beta = 0.2720^{**}$), TRT has weak significant impact on EEG ($\beta = 0.2320^{**}$), JST has weak significant impact on TRT ($\beta = 0.1971^*$). Furthermore, GGV has indirect effect to CSR ($\beta = 0.4536^{***}$) and QWL has indirect effect to EEG ($\beta = 0.3318^{***}$), and QWL has indirect effect to TRT ($\beta = 0.1261^*$).

Table 5 The results of structural model assessment

Hypothesis	Path Relationship	Effect	Path Coefficient	SD	T statistics	P values	Result
H1	GGV -> ENV	DE	0.6579	0.0650	10.1179	0.0000	Supported
		IE	-	-	-	-	
		TE	0.6579	0.0650	10.1179	0.0000	
H2	GGV -> QWL	DE	0.8482	0.0282	30.1137	0.0000	Supported
		IE	-	-	-	-	
H3		TE	0.8482	0.0282	30.1137	0.0000	
	GGV -> CSR	DE	0.2459	0.0647	3.8036	0.0001	Supported
		IE	0.4536	0.0553	8.2002	0.0000	
H4		TE	0.6995	0.0561	12.4768	0.0000	
	ENV -> CSR	DE	0.6894	0.0618	11.1468	0.0000	Supported
		IE	-	-	-	-	
H5		TE	0.6894	0.0618	11.1468	0.0000	
	QWL -> JS	DE	0.6397	0.0559	11.4476	0.0000	Supported
		IE	-	-	-	-	

Hypothesis	Path Relationship	Effect	Path Coefficient	SD	T statistics	P values	Result
H6	QWL -> EEG	TE	0.6397	0.0559	11.4476	0.0000	
		DE	0.4726	0.0871	5.4242	0.0000	Supported
		IE	0.3318	0.0730	4.5432	0.0000	
H7	QWL -> TRT	TE	0.8044	0.0355	22.6658	0.0000	
		DE	0.5543	0.0688	8.0615	0.0000	Supported
		IE	0.1261	0.0593	2.1247	0.0337	
H8	JST -> TRT	TE	0.6804	0.0406	16.7693	0.0000	
		DE	0.1971	0.0873	2.2570	0.0241	Supported
		IE	-	-	-	-	
H9	JST -> EEG	TE	0.1971	0.0873	2.2570	0.0241	
		DE	0.2720	0.1041	2.6124	0.0090	Supported
		IE	0.0457	0.0267	1.7107	0.0872	
H10	TRT -> EEG	TE	0.3177	0.1052	3.0206	0.0025	
		DE	0.2320	0.0801	2.8948	0.0038	Supported
		IE	-	-	-	-	
		TE	0.2320	0.0801	2.8948	0.0038	

Discussion

The relationship between corporate social responsibility (CSR), environment, governance, quality of work life (QWL), job satisfaction, trust, and employee engagement is consistent with the research of Carroll and Shabana (2010), found that subject of increasing relevance in organizational behavior studies. CSR initiatives positively affect the work environment, enhancing employee morale, building trust, and fostering a sense of pride and commitment among employees (Carroll & Shabana, 2010). Environmental responsibility: Companies that prioritize sustainability and ethical environmental practices often see increased job satisfaction and engagement among employees who value these qualities (Elkington, 1997). Role of Governance, effective governance ensures CSR and environmental actions are implemented transparently, which builds trust. This trust encourages employees to align with organizational goals, improving engagement (Mayer et al., 1995). QWL, strong CSR and governance focus contributes to a high QWL, where employees experience well-being, work-life balance, and job security. This positively correlates with job satisfaction, trust, and engagement (Hackman & Oldham, 1976). Interconnectedness factors are mutually reinforcing. CSR and governance foster QWL, job satisfaction, and engagement, and, in turn, engaged employees strengthen CSR efforts, creating a virtuous cycle that benefits both the organization and its stakeholders (Schaufeli & Bakker, 2004).

In summary, the interplay between CSR, environmental responsibility, governance, QWL, job satisfaction, trust, and employee engagement is complex and multifaceted. These elements are interconnected, with each influencing the others in ways that can either enhance or undermine organizational effectiveness. Companies that recognize and actively manage

these relationships are better positioned to create a sustainable, ethical, and highly engaged workforce. Additionally, the logistics & transportation multinational company should consider evaluating and assessing managerial success based on its ability to build a community with high levels of CSR environment, governance, QWL, job satisfaction, trust, and employee engagement underscores the holistic nature of modern organizational success.

Conclusion

The interconnectedness of corporate social responsibility (CSR), environment, governance, quality of work life (QWL), job satisfaction, trust, and employee engagement are fundamental to modern organizational success. Companies that embed CSR and sustainable practices contribute positively to society while building a more engaged and satisfied workforce. Effective governance enhances transparency, fostering trust, which is crucial for maintaining high job satisfaction and employee engagement. This alignment creates a supportive work environment where employees feel valued and aligned with organizational values, increasing their commitment and boosting overall performance. A comprehensive approach to managing these relationships enables organizations to create a sustainable, ethical workplace that benefits both employees and the community.

Recommendations for Future Research

Further research could explore these dynamics across different industries and cultural contexts to enhance generalizability. Future studies could also examine how varying levels of CSR commitment affect employee engagement and satisfaction across different employee demographics and career stages. Moreover, longitudinal studies may help capture the long-term effects of CSR and governance practices on organizational outcomes, including adding variables to the study, such as employee loyalty, etc.

References

Aguilera, R. V., Rupp, D. E., Williams, C. A., & Ganapathi, J. (2007). Putting the S back in Corporate Social Responsibility: A Multilevel Theory of Social Change in Organizations. *Academy of Management Review*, 32(3), 836-863.
<https://doi.org/10.5465/amr.2007.25275678>

Carrión, G.C., Nitzl, C., & Roldán, J.L. (2017). *Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical examples Partial least squares path modeling* (pp. 173-195). Springer.

Carroll, A. B. (1991). The Pyramid of Corporate Social Responsibility: Toward the Moral Management of Organizational Stakeholders. *Business Horizons*, 34(4), 39-48.
[https://doi.org/10.1016/0007-6813\(91\)90005-G](https://doi.org/10.1016/0007-6813(91)90005-G)

Carroll, A. B., & Shabana, K. M. (2010). The Business Case for Corporate Social Responsibility: A Review of Concepts, Research and Practice. *International Journal of Management Reviews*, 12(1), 85-105. <https://doi.org/10.1111/j.1468-2370.2009.00275.x>

Chaiprasit, K. & Santidhirakul, O. (2011). Happiness at Work of Employees in Small and Medium-sized Enterprises, Thailand. *Procedia - Social and Behavioral Sciences*, 25, 189 – 200

Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences*, 2nd Edition Hillsdale, Nj: Lawrence Erlbaum Associates.

Elkington, J. (1997). *Cannibals with Forks: The Triple Bottom Line of 21st Century Business*. Capstone.

Fornell, C. & Larcker, D.F. (1981) 'Evaluating structural equation models with unobservable variables and measurement error', *Journal of Marketing Research*, 18(1), 39–50.

Ghozali, I., & Latan, H. (2015). *Partial least squares: Konsep, teknik, dan aplikasi menggunakan program smart PLS 3.0* (2nd ed.). Semarang: Universitas Dipone-goro Semarang.

Hackman, J. R., & Oldham, G. R. (1976). Motivation through the Design of Work: Test of a Theory. *Organizational Behavior and Human Performance*, 16(2), 250-279. [https://doi.org/10.1016/0030-5073\(76\)90016-7](https://doi.org/10.1016/0030-5073(76)90016-7)

Hair Jr, J.F., Hult, G.T.M., Ringle, C., & Sarstedt, M. (2016). *A primer on partial least squares structural equation modeling (PLS-SEM)*. Sage publications.

Hair Jr, J.F., Sarstedt, M., Ringle, C.M., & Gudergan, S.P. (2017). *Advanced issues in partial least squares structural equation modeling*. Sage publications.

Hair, J.F., Ringle, C.M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. *The Journal of Marketing Theory and Practice*, 19(2), 139-152.

Hart, S. L., & Milstein, M. B. (2003). Creating Sustainable Value. *Academy of Management Perspectives*, 17(2), 56-67. <https://doi.org/10.5465/ame.2003.10025194>

Henseler, J. (2017). Bridging design and behavioral research with variance-based structural equation modeling. *Journal of advertising*, 46(1), 178-192.

Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. *Comput Stat*, 28, 565–580.

Henseler, J., Dijkstra, T.K., Sarstedt, M., Ringle, C.M., Diamantopoulos, A., Straub, D.W., Ketchen, D.J. Jr, Hair, J.F., Hult, G.T.M. and Calantone, R.J. (2014). Common beliefs and reality about PLS: comments on Rönkkö & Evermann (2013). *Organizational Research Methods*, 17(2), 182-209.

Hu, L.-t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1), 1–55.

Jogiyanto, H. (2011). *Metodologi Penelitian Bisnis: Salah Kaprah dan Pengalaman-pengalaman*. BPFE. Yogyakarta.

Kahn, W. A. (1990). Psychological Conditions of Personal Engagement and Disengagement at Work. *Academy of Management Journal*, 33(4), 692-724.
<https://doi.org/10.5465/256287>

Klein, L. L., Pereira, B. A. D., & Lemos, R. B. (2019). Quality of working life: Parameters and evaluation in the public service. *Revista de Administração Mackenzie*, 20(3). 1-34.

Laschinger, H. K. S., Finegan, J., & Shamian, J. (2001). The impact of workplace empowerment, organizational trust on staff nurses' work satisfaction and organizational commitment. *Health Care Management Review*, 26(3), 7-23.

Locke, E. A. (1976). *The nature and causes of job satisfaction*. In M. D. Dunnette (Ed.), *Handbook of Industrial and Organizational Psychology* (pp. 1297-1343). Rand McNally.

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of Organizational Trust. *Academy of Management Review*, 20(3), 709-734.
<https://doi.org/10.5465/amr.1995.9508080335>

McWilliams, A., & Siegel, D. (2001). Corporate Social Responsibility: A Theory of the Firm Perspective. *Academy of Management Review*, 26(1), 117-127.
<https://doi.org/10.5465/amr.2001.4011987>

Nyhan, R.C. & Marlowe, H.A. (1997). Development and psychometric properties of the organizational trust inventory. *Evaluation Review*, 21 (5), 614-635.

Orlitzky, M., Siegel, D. S., & Waldman, D. A. (2011). Strategic Corporate Social Responsibility and Environment. *Business & Society*, 50(1), 6-27.
<https://doi.org/10.1177/0007650310394323>

Osborne, S., & Hammoud, M. S. (2017). Effective Employee Engagement in the Workplace. *International Journal of Applied Management and Technology*, 16(1), 50-67.

Peng, D.X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. *Journal of Operations Management*, 30(6), 467-480.

Pfeffer, J. (2018). *Dying for a Paycheck: How Modern Management Harms Employee Health and Company Performance—and What We Can Do About It*. HarperBusiness.

Podsakoff, P. M., MacKenzie, S. B., Moorman, R. H., & Fetter, R. (1996). Transformational leader behaviors and their effects on followers' trust in leader, satisfaction, and organizational citizenship behaviors. *Leadership Quarterly*, 1(2), 107-142.

Porter, M. E., & Kramer, M. R. (2006). Strategy & Society: The Link Between Competitive Advantage and Corporate Social Responsibility. *Harvard Business Review*, 84(12), 78-92.

Robinson, S. L. (1996). Trust and breach of the psychological contract. *Administrative Science Quarterly*, 41(4), 574-599.

Schaufeli, W. B., & Bakker, A. B. (2004). Job Demands, Job Resources, and Their Relationship with Burnout and Engagement: A Multi-Sample Study. *Journal of Organizational Behavior*, 25(3), 293-315. <https://doi.org/10.1002/job.248>

Tenenhaus, M. & Amato, S. & Esposito V. V. (2004). A global goodness-of-fit index for PLS structural equation modelling. Proceedings of the XLII SIS Scientific Meeting.

Wetzel, M., Odekerken-Schröder, G., & Oppen, C. V. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models. *Guidelines and Empirical Illustration MIS Quarterly*, 33(1), 177-195.