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ABSTRACT

Today, online businesses often offer personalized services to consumers. Personalization
not only gives consumers better experience, but also helps increase businesses profitability.
However, there are some drawbacks that come with it. This article aims to provide basic
knowledge of web personalization and its impacts. There are four parts presented in the article as
follows: 1) basic knowledge of personalization, from consumer data collectionto howdata is used
in various types of recommender systems; 2) give examples of how personalizationis used — that
is, in advertising, user engagement, and product recommendation; 3) discuss the impacts of
personalization on consumers and society — consumer privacy concerns and a decrease in
content diversity; and 4) recommendations to stakeholders — businesses, consumers, and

government agencies.
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