

BUILDING STRATEGIC LEADERSHIP, TECHNOLOGY-AND MARKET-BASED RADICAL
INNOVATIONS CAPABILITY ON PERFORMANCE OF MOTOR VEHICLES AND PARTS
BUSINESS IN THAILAND

18

Chanthima Phromket*

Kanokkan Vichasilp**

Wannida Sareekham**

ABSTRACT

The objective of this study is to further understanding role of building strategic leadership, technology and market-based radical innovations capability on performance of motor vehicles and parts business in Thailand. According to the existing literature, strategic leadership and leadership and organizational learning culture are an important strategy that will help firms achieve greatly technology and market-based radical innovations capability and gain outstanding performance. The data is collected from 129 firms of business motor vehicles and parts in Thailand. The results indicate that: 1) strategic leadership and organizational learning culture have a significant positive impact and influence on technology and market-based radical innovations capability and performance, 2) strategic leadership and organizational learning culture have positive influence on technology and market-based radical innovations capability, and 3) environmental dynamism as a moderator between technology and market-based radical innovations capability and performance have positive influence on performance.

Keywords: Strategic Leadership, Organizational Learning Culture, Technology- and Market-Based Radical Innovations Capability and Environmental Dynamism

INTRODUCTION

In recent years, most of the organizations' management mainly considered their policies and gave their attention to strategic leadership, and applied organizational culture and technology-based and market-based radical innovations capabilities, as these variables were considered to play an important role in competition within the industry. Gavetti and Rivkin (2007) argue that this is a superior management of select cognitive processes side of strategy, that is, on the study of how managers understand the internal and external organizational environments and search rationally for an effective strategy to understand the importance of exploit market opportunities (Kabanoff and Brown, 2008). Furthermore, Papadakis et al., (1998) emphasized that strategic leadership and radical innovation capabilities are substantially influenced by top managers in the environmental dynamism context.

* Program of Management, Faculty of Industry and Technology, Rajamangala University of Technology Isan, Sakon Nakhon Campus

** Program of Marketing, Faculty of Industry and Technology, Rajamangala University of Technology Isan, Sakon Nakhon Campus

The purpose of this research is to examine the relationships between strategic leadership and organizational learning culture on performance by using environmental dynamism as a moderator, and radical innovation capability, consisting of technology-based radical innovation capability and market-based radical innovation capability, as a mediator. In this study, the key research questions for the paper are as follows: Firstly, how does strategic leadership affect radical innovation capability (consisting of technology-based radical innovation capability and market-based radical innovation capability) and influences the performance? Secondly, how does organizational learning culture affect radical innovation capability (consisting of technology-based radical innovation capability and market-based radical innovation capability) and influences the performance? Thirdly, how does radical innovation capability (consisting of technology-based radical innovation capability and market-based radical innovation capability) affect performance? Fourthly, how does environmental dynamism moderate the effect of radical innovation capability, consisting of technology-based radical innovation capability and market-based radical innovation capability, on performance?

This article is organized as follows. In the next section, we review the relevant literature and develop the research statement. Then, we detail the methodology used to design the empirical study. Finally, the contributions are presented to strategic leadership, organizational learning culture and radical innovation capability literature and practice and suggesting future research opportunities.

COMPUTATIONAL DETAILS

Clearly, some of the major factors that influence a company's decision to adopt strategic leadership and organizational learning culture as a source of competitive advantage can help to explain the growth and sustainability of the firm (Mayson and Barret, 2006). In particular, each of the factors explored is subject to managerial influence and is an essential element of strategic business plans in our interdisciplinary conceptual framework. The conceptual and theoretical structure is shown in Figure 1.

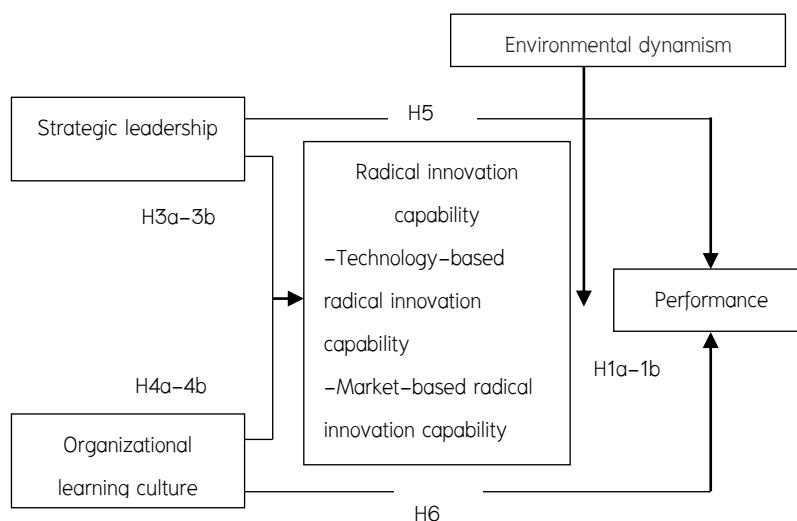


Figure 1 Conceptual Model of the Relationship between Building strategic leadership, technology-based and market-based radical innovations capabilities, and the performance of the motor vehicles and parts business in Thailand

1. Technology-Based Radical Innovation Capability

Technology-based radical innovation capability refers to the adoption new and advanced technologies and improves customer benefits relative to existing products for customers in existing markets (Benner and Tushman 2003). Many studies have indicated that technology-based radical innovation capability plays a critical role in facilitating performance (Zhou et al., 2005; Benner and Tushman, 2003; Sorescu et al., 2003). Therefore, we posit the hypothesis as below: Hypothesis 1a: The greater the technology-based radical innovation capability is, the more likely that firms will achieve higher Performance.

2. Market-Based Radical Innovation Capability

Market-based radical innovation capabilities refer to new and different technologies and create a set of fringe, and usually new, customer values for emerging markets (Benner and Tushman 2003; Christensen and Bower 1996). Hamel and Prahalad (1994) also argue that the introduction of breakthrough innovations is the key to survival in turbulent environments. In particular, because market-based radical innovation capability provides greater benefits to a firm's mainstream customers and market-based innovations are embraced by new or emerging markets (Zhou et al., 2005). Therefore, we posit the hypothesis as below: Hypothesis 1b: The greater the market-based radical innovation capability is, the more likely that firms will achieve higher Performance.

3. Moderating Effect of Environmental Dynamism

Environmental dynamism refers to the rate of change and the unpredictability of change in a firm's external environment (Dess and Beard, 1984). The role of the external environment technology-based and market-based radical innovations capability and performance has been widely studied and acknowledged (e.g., Wind and Mahajan 1997; Garg et al., 2003; Zhou et al., 2005). Therefore, we posit the hypothesis as below:

Hypothesis 2a: Environmental dynamism will positively moderate the technology-based radical innovation capability–performance relationships.

Hypothesis 2b: Environmental dynamism will positively moderate the market-based radical innovation capability–performance relationships.

4. Strategic Leadership

Strategic leadership refers to an ability of firms to anticipate, envision and maintain flexibility, and empower others to create a strategic chance and a viable future of the organization (Kjelin, 2009). The positive relationship between strategic orientations and firm performance is generally supported in previous studies (e.g., Morgan and Strong, 2003; Waldman et al., 2001). Thus, strategic leadership is more than being customer led, and it can lead to technology-based radical innovation capability. Therefore, we posit the hypothesis as below:

Hypothesis 3a: The greater the strategic leadership is, the more likely that firms will achieve higher technology-based radical innovation capability.

Hypothesis 3b: The greater the strategic leadership is, the more likely that firms will achieve higher the market-based radical innovation capability.

Hypothesis 5: The greater the strategic leadership is, the more likely that firms will achieve higher the performance.

5. Organizational Learning Culture

Organizational learning culture refers to an organization which has the skill to produce, achieve and then spread knowledge and which can change its attitude to display modern knowledge and insights (Garvin 1993). Many studies have indicated that a strong organizational learning culture should mean that an organization learns and acts faster and is therefore better in dealing with its technology-based radical innovation capability and market-based radical innovation capability (e.g., Deshpande and Farley, 2004; Khazanchi et al., 2007; Lau and Ngo, 2004; Lemon and Sahota, 2004) and enhance its performance (e.g., Shahzad et al., 2012; Bai and Fallah, 2012; Kotter and Heskett, 1992). Therefore, we posit the hypothesis as below:

Hypothesis 3a: The greater the organizational learning culture is, the more likely that firms will achieve higher technology-based radical innovation capability.

Hypothesis 3b: The greater the organizational learning culture is, the more likely that firms will achieve higher the market-based radical innovation capability.

Hypothesis 6: The greater the organizational learning culture is, the more likely that firms will achieve higher the performance.

RESEARCH METHODOLOGY

1. Sample and Data Collection Procedure

The sample frame for this research is motor vehicles and parts businesses in Thailand that have recently participated in strategic leadership and organizational learning culture. As a sampling base, all firms that had been involved in any form of strategic leadership and organizational learning culture publicized in 2015 were included. The population of the study is 644 firms. The questionnaire is filled out by chief executive officers (CEOs) who represent as our key informants since they receive information from a wide range of departments and, therefore, are a very valuable source for evaluating aspects of organizations. With regard to the questionnaire mailing, 30 surveys were undeliverable because some firms were no longer in business or had moved to unknown locations. Deducting the undeliverable from the original 644 mailed, the valid mailing was 614 surveys, from which 129 responses were received of the surveys completed and returned, only 102 were usable. The effective response rate was approximately 21%. According to Aaker et al., (2001), the response rate for a mail survey, without an appropriate follow-up procedure, is less than 20%. Thus, the response rate of this study is considered acceptable. Following Armstrong and Overton (1977), we tested for differences between early and late respondents. We found no significant differences, indicating that non response bias was not a major problem in our data.

2. Questionnaire Development and Variable Measurement

Overall, all constructs in the model were measured with multiple-item scales. Each of these variables was measured by a five-point Likert-type scale, ranging from 1 (strongly disagree) to 5 (strongly agree). Most items were derived from the literature. This article is radical innovation capability as follows: technology-based radical innovation capability was measured using four items adapted from Gatignon and Xuereb's (1997). Market-based radical innovation capability was measured by a four item scale adapted from Eliashberg and Robertson's (1988). Strategic leadership was measured by a three-item scale is implemented to evaluate the degree to which firms develop, use and exploit their absorptive capacity, adaptive capacity and managerial wisdom adapted from Kjelin (2009). Organizational learning culture was measured using nine items adapted from Škerlavaj et al. (2007). Environmental dynamism was measured using five items adapted from Jansen (2009). Performance measures were chosen based on the work of several authors through respondents' subjective assessments of their customers' satisfaction, using a synthesis of previous measures (e.g., Fornell et al., 1996); profitability, using perceptual scales related to performance over the past 12 months and expectations for the following year (e.g., Morgan et al., 2002); and market effectiveness, using a scale that tapped the degree to which the firms' market-based goals had been achieved (e.g., Vorhies and Morgan 2003).

With the need to investigate the hypothesized relationships, firm age and firm capital are control variables. Firm age was measured by the number of years that a firm has been in operation. Firm capital was measured by the amount of money a firm has invested in doing business (Ussahawanitchakit, 2005).

3. Method

Factor analysis was firstly utilized to investigate the underlying relationships of a large number of items and to determine whether they can be reduced to a smaller set of factors. The factor analyses conducted were done separately on each set of the items representing a particular scale due to limited observations. With respect to the confirmatory factor analysis, this analysis has a high potential to inflate the component loadings. Thus, a higher rule-of-thumb, a cut-off value of 0.40, was adopted (Nunnally and Berstein, 1994). All factor loadings are greater than the 0.40 cut-off and are statistically significant. The reliability of the measurements was evaluated by Cronbach alpha coefficients. In the scale reliability, Cronbach alpha coefficients are greater than 0.70 (Nunnally and Berstein, 1994). The scales of all measures appear to produce internally consistent results; thus, these measures are deemed appropriate for further analysis because they express an accepted validity and reliability in this study. Table: 1 shows the results for both factor loadings and Cronbach alpha for multiple-item scales used in this study.

Table 1: Results of measure validation

Items	Factor Loadings	Cronbach Alpha
Strategic leadership	0.42–0.85	0.77
Organizational learning culture	0.61–0.83	0.81
Technology-based radical innovation capability	0.57–0.93	0.83
Market-based radical innovation capability	0.44–0.92	0.72
Environmental dynamism	0.64–0.95	0.85
Performance	0.71–0.96	0.94

The Ordinary Least Squares (OLS) regression analysis is used to test the hypothesized relationships and estimate factors affecting a firm's motor vehicles and parts business performance.

RESULTS AND DISCUSSIONS

The descriptive statistics and correlation matrix for all variables are shown in Table: 2. The results of OLS regression according to four hypotheses are estimated as shown in Table: s 3 to 7. Interaction terms induced by environmental dynamism along with the main effects are included in the models 4 to 6.

Table 2: Descriptive statistics and correlation matrix

Variables	SL	OC	TC	MC	ED	PF	FA	FC
Mean	4.23	4.19	4.21	4.23	4.14	4.19	18	116
Standard Deviation (Std)	0.40	0.37	0.42	0.39	0.38	0.37	4	27
Strategic Leadership (SL)	1.00							
Organizational learning culture (OC)	0.89 ^{**}	1.00						
Technology-based radical innovation capability (TC)	0.77 ^{**}	0.84 ^{**}	1.00					
Market-based radical innovation capability (MC)	0.71 ^{**}	0.83 ^{**}	0.78 ^{**}	1.00				
Environmental dynamism (ED)	0.79 ^{**}	0.90 ^{**}	0.72 ^{**}	0.83 ^{**}	1.00			
Performance (PF)	0.81 ^{**}	0.91 ^{**}	0.84 ^{**}	0.95 ^{**}	0.95 ^{**}	1.00		
Firm age (FA)	-0.01	0.00	0.03	-0.02	0.00	-0.01	1.00	
Firm capital (FC)	0.11	0.14	.206 [*]	0.04	0.12	0.11	0.00	1.00

^{**}p < .05

^aBeta coefficients with standard errors in parenthesis.

Table 2 shows the descriptive statistics and correlation matrix for all variables. With respect to potential problems relating to multi-collinearity, variance inflation factors (VIF) were used to provide information on the extent to which non-orthogonality among independent variables inflates standard errors. The VIFs range from 1.01 to 7.05, well

below the cut-off value of 10 recommended by Neter et al., (1985), meaning that the independent variables are not correlated with each other. Therefore, there are no substantial multi-collinearity problems encountered in this study.

Table 3: OLS regression results of radical innovation capability and performance

Independent variables	Dependent variables	
	Performance(PF)	
Technology-based radical innovation capability(TC)	0.23*** (0.03)	0.75*** (0.04)
Market-based radical innovation capability(MC)	0.71*** (0.04)	0.90*** (0.03)
Firm age(FA)	0.00 (0.01)	-0.01 (0.02)
Firm capital(FC)	0.02 (0.02)	0.04 (0.04)
Adjusted R ²	0.92	0.70
	0.90	

***p < .01 ^aBeta coefficients with standard errors in parenthesis.

Table 4: OLS regression results of environmental dynamism as a moderating effect of relationship

Independent variables	Dependent variables	
	Performance(PF)	
Technology-based radical innovation capability(TC)	0.28*** (0.03)	0.51*** (0.04)
Market-based radical innovation capability(MC)	0.60*** (0.04)	0.78*** (0.04)
Environmental dynamism(ED)	0.17*** (0.03)	0.51*** (0.05)
Technology-based radical innovation capability(TC)*	0.02	-0.05* (0.03)
Environmental dynamism(ED) (TC*ED)		
Market-based radical innovation capability(MC) *	-0.06*	-0.04* (0.02)
Environmental dynamism(ED) (MC*ED)		
Firm age(FA)	-0.03 (0.02)	-0.06 (0.04)
Firm capital(FC)	-0.03 (0.04)	-0.04 (0.07)
Adjusted R ²	0.97	0.89
	0.94	

***p < .01, **p < .05, *p < .1

^aBeta coefficients with standard errors in parenthesis.

Table 5: OLS regression results of strategic leadership, organizational learning culture and performance, and technology-based radical innovation capability

Independent variables	Dependent variables		
	Technology-based radical innovation capability(TC)		
Strategic leadership(SL)	0.14 (0.11)	0.81*** (0.06)	
Organizational learning culture(OC)	0.82*** (0.12)		0.96*** (0.06)
Firm age(FA)	0.01 (0.02)	0.02 (0.03)	0.01 (0.02)
Firm capital(FC)	-0.02 (0.05)	0.00 (0.05)	-0.02 (0.05)
Adjusted R ²	0.70	0.59	0.70

***p < .01

^aBeta coefficients with standard errors in parenthesis.

Table 6: OLS regression results of strategic leadership, organizational learning culture and performance, and market-based radical innovation capability

Independent variables	Dependent variables		
	Market-based radical innovation capability(MC)		
Strategic leadership(SL)	-0.13 (0.11)	0.69*** (0.06)	
Organizational learning culture(OC)	1.00*** (0.12)		0.88*** (0.05)
Firm age(FA)	-0.01 (0.02)	-0.01 (0.03)	-0.01 (0.02)
Firm capital(FC)	0.00 (0.04)	0.03 (0.06)	0.01 (0.04)
Adjusted R ²	0.68	0.49	0.68

***p < .01

^aBeta coefficients with standard errors in parenthesis.

Table 7: OLS regression results of strategic leadership, organizational learning culture and performance, and performance

Independent variables	Dependent variables		
	Performance(PF)		
Strategic leadership(SL)	0.00 (0.07)	0.75*** (0.05)	
Organizational learning culture(OC)	0.92*** (0.08)		0.92*** (0.04)
Firm age(FA)	-0.01 (0.02)	0.00 (0.02)	-0.01 (0.02)
Firm capital(FC)	0.01 (0.03)	0.04 (0.04)	0.01 (0.03)
Adjusted R ²	0.83	0.65	0.83

***p < .01

^aBeta coefficients with standard errors in parenthesis.

Table 3 to 7 presents the results of OLS regression of the relationships between strategic leadership organizational learning culture, and performance via radical innovation capability as a mediator and environmental dynamism as a moderator. The first set of research hypotheses focused on the relationships between radical Innovation capability variables (Technology-based radical innovation capability and market-based radical innovation capability) and performance (Hypothesis 1a–1b) are showed in Table: 3. The findings indicate that technology-based radical innovation capability (H1a: b= 0.23, p < 0.00; b= 0.75, p < 0.00) and market-based radical innovation capability (H1b: b=0.71, p < 0.00; b= 0.90, p < 0.00) have a positive and significant effect on performance. Thus, Hypothesis 1a–1b are supported. Therefore, radical Innovation capability variables consist of Technology-based radical innovation capability and market-based radical innovation capability is necessary superior performance.

The second set of the hypothesized moderating effects of environmental dynamism, on the linkage between radical Innovation capability variables consist of technology-based radical innovation capability and market-based radical innovation capability and performance are examined (Hypothesis 2a–2b) in Table: 4. For the moderating effects, environmental dynamism does not positively and significantly moderate the technology-based radical innovation capability–performance relationship (b=−0.05, p < 0.06), market-based radical innovation capability–performance (b= −0.06, p < 0.06; b=−0.04, p < 0.06). In the existing literature, environmental dynamism positively moderates the strong association of rational innovation and performance (Perez-Luno et al., 2014). Here, environmental characteristics do not influence on their technology-based radical innovation capability, and that does not relate to the performance. Thus, Hypotheses 2a–2b are not supported.

The third set of the hypotheses concentrated on the relationships between strategic leadership, organizational learning culture variables and technology-based radical innovation capability (Hypothesis 3a and 4a) in Table: 5. The evidence indicates that strategic leadership (H3a: $b = 0.81$, $p < 0.00$), organizational learning culture (H4a: $b = 0.82$, $p < 0.00$; $b = 0.91$, $p < 0.00$) have a positive and significant effect on technology-based radical innovation capability. Therefore, Hypothesis 3a and 4a are supported. The finding about the main effect of strategic leadership and organizational learning culture on technology-based radical innovation capability replicates and extends research by García-Morales et al., (2008); Škerlavaj et al., (2010); García-Morales et al., (2012) who found a positive relationship between strategic leadership and organizational learning culture on technology-based radical innovation capability.

The fourth set of the hypotheses concentrated on the relationships between strategic leadership, organizational learning culture variables and market-based radical innovation capability (Hypothesis 3b and 4b) in Table: 6. The evidence indicates that strategic leadership (H3b: $b = 0.69$, $p < 0.00$), organizational learning culture (H4b: $b = 1.00$, $p < 0.00$; $b = 0.88$, $p < 0.00$) have a positive and significant effect on market-based radical innovation capability. Therefore, Hypothesis 3b and 4b are supported. The finding about the main effect of strategic leadership and organizational learning culture on market-based radical innovation capability replicates and extends research by Baker and Sinkula (1999); Farrell (2000); Calantone et al., (2002), who found a positive relationship between strategic leadership and organizational learning culture on market-based radical innovation capability.

Finally, the tests of the hypotheses state that strategic leadership and organizational learning culture is expected to positively drive performance (Hypothesis 5 and 6) as show in Table: 7. The evidence indicates that strategic leadership (H5: $b = 0.75$, $p < 0.00$), organizational learning culture (H6: $b = 0.92$, $p < 0.00$; $b = 0.92$, $p < 0.00$) have a positive and significant effect on performance. Therefore, Hypothesis 5 and 6 are supported.

For the control variables, there are no impacts on the product innovation development and performance all p values are greater than 0.05.

CONCLUSION

The results of an illustrative statistical study indicated that the strategic leadership and organizational learning culture development exhibited a positive effect on performances by using environmental dynamism as a moderator and radical innovation capability. The data in Table: 3, 5 to 7 shows that the strategic leadership and organizational learning culture display a positive role on performance. Surprisingly, environmental dynamism does not moderate the radical innovation capability–performance relationships. However, future research is needed to check the existing literatures of radical innovation capability, conceptualize the measurement of radical innovation capability, and find some explanations about why radical innovation capability have implicit relationships with performance. Likewise, it is needed to collect data from a larger population and/or a comparative population in order to increase the level of reliable results, and from a larger company, such as multinational enterprises (MNEs) for gaining more validity and reliability. To successfully survive in the rigorous markets, organizational learning culture and environmental dynamism likely support firms to increase their performance through their staffs, operations, and practices.

REFERENCES

Aaker D. A., Kumar V., and Day G. S. Marketing Research. New York: John Wiley and Sons, 2001.

Armstrong J.S., and Overton Terry S. "Estimating Non-Response Bias in Mail Surveys", Journal of Marketing Research. 14(3) : 396–402 : 1977.

Bai N., and ZFallah Y. "Relationship between Learning Culture and Organizational Performance in Iran's Ministry of Sports and Youth,". European Journal of Experimental Biology. 2(6) : 2206–2211 : 2012.

Baker J.M., Sinkula W.E. "The synergetic effect of Market Orientation and learning orientation on Organizational Performance,". Journal of the Academy of Marketing Science. 27(4) : 411–27 : 1999.

Benner M.J., and Michael L.T. "Exploitation, Exploration, and Process Management: The Productivity Dilemma Revisited,". Academy of Management Review. 28(2) : 238–256 : 2003.

Calantone R.J., Cavusgil S.T., and Zhao Y. "Learning orientation, firm innovation capability, and firm performance,". Industrial Marketing Management. 31(6) : 515–524 : 2002.

Christensen and Joseph L. B. "Customer Power, Strategic Investment and the Failure of Leading Firms,". Strategic Management Journal. 17(3) : 197–281 : 1996.

Deshpande R., and Farley J.U., "Organizational Culture, Market Orientation, Innovativeness, and Firm Performance: An international Research Odyssey,". International Journal of Research in Marketing. 21(1) : 3–22 : 2004.

Dess G.G., and Beard D.W., "Dimensions of organizational Task Environments,". Administrative Science Quarterly. 29(1) : 52–73 : 1984.

Eliashberg J. and Thomas S.R. "New Product Preannouncing Behavior: A Market Signaling Study,". Journal of Marketing Research. 25 : 282–92 : 1988.

Farrell M.A. "Developing a Market-Oriented Learning Organisation,". Australian Journal of Management. 25(2) : 201–222 : 2000.

Fornell C., Johnson M.D., Anderson E.W., Cha J., and Bryant B.E. "The American Customer Satisfaction Index: Nature, Purpose, and Findings,". Journal of Marketing. 60(4) : 7–18 : 1996.

García M., Víctor J., Matías R., and Hurtado-T. F. "Influence of Transformational Leadership on Organizational Innovation and Performance Depending on the Level of Organizational learning in the Pharmaceutical Sector,". Journal of Organizational Change Management. 21(2) : 188–212 : 2008.

García M., Víctor J., Jiménez B., María M., and Gutiérrez G. L. "Transformational Leadership Influence on Organizational Performance Through Organizational Learning and Innovation,". Journal of Business Research. 65 : 1040–1050 : 2012.

Garg V.K., Walters B.A., and Priem R.L. "Chief Executive Scanning Emphases, Environmental Dynamism, and Manufacturing Firm Performance,". Strategic Management Journal. 24 : 725–744 : 2003.

Garvin D.A., "Building a Learning Organization,". Harvard Business Review. 73(4) : 78–91 : 1993.

Gatignon H., and Jean-Marc X. "Strategic Orientation of the Firm and New Product Performance,". Journal of Marketing Research. 34 : 77–90 : 1997.

Gavetti G., and Rivkin J.W. “On the Origin of Strategy: Action and Cognition Over Time,”. Organization Science. 18 : 420–439 : 2007.

Hamel G., and Prahalad C.K. Competing for the Future. Boston: Harvard Business School Press, 1994.

Jansen Justin J.P., Vera D., and Crossan M. “Strategic Leadership for Exploration and Exploitation: The moderating Role of Environmental Dynamism,”. The Leadership Quarterly. 20 : 5–18 : 2009.

Kabanoff B., and Brown S., “Knowledge Structures of Prospectors, Analyzers, and Defenders: Content, Structure, Stability, and Performance,”. Strategic Management Journal. 29 : 149–68 : 2008.

Khazanchi S., Lewis M.W., and Boyer K.K. “Innovation–Supportive Culture: The Impact of Organizational Values on Process Innovation,”. Journal of Operations Management. 25(4) : 871–884 : 2007.

Kjelin E. “A Concept Analysis for Strategic Leadership,”. EBS Review. 26 : 37–57 : 2009.

Kotter J. and Heskett J. Corporate Culture and Performance. New York: Free Press, 1992.

Lau C.–M., and Ngo H.–Y. “The HR System, Organizational Culture, and Product Innovation,”. International Business Review. 13(6) : 685–703 : 2004.

Mayson S., and Barrett R. “The Science and Practice of HRM in Small Firms,”. Human Resource Management Review. 16(4) : 447–455 : 2006.

Morgan R.E., and Strong C.A. “Business performance and dimensions of strategic orientation,”. Journal of Business Research. 56(3) : 163–176 : 2003.

Neter J., Wasserman W., and Kutner M.H. Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs. Homewood: Richard D. Irwin, Inc, 1985.

Nunnally J.C., and Bernstein I.H. Psychometric Theory. New York: McGraw–Hill, 1994.

Papadakis V., Lioukas S., and Chambers D. “Strategic Decision–Making Processes: The Role Of Management And Context,”. Strategic Management Journal. 19 : 115–147 : 1998.

Perez –L.A., Gopalakrishnan S., & Cabrera R.V. “Innovation and Performance: The Role of Environmental Dynamism on the Success of Innovation Choices,”. IEEE Transactions On Engineering Management. 61(3) : 499–510 : 2014.

Shahzad F., Rana A., Ayesha R., and Lalarukh S. “Impact of Organizational Culture on Organizational Performance: An Overview in the interdisciolyinary,”. Journal of contemporary research in business January. 3(9) : 975–985 : 2012.

Škerlavaj M.I., Štemberger M., Škrinjar R., and Dimovski V. “Organizational Learning Culture –The Missing Link Between Business Process Change and Organizational Performance,”. International Journal of Production Economics. 35(3) : 346–367 : 2007.

Škerlavaj M., Song J. H., and Lee Y. “Organizational Learning Culture, Innovative Culture and Innovations in South Korean Frms,”. Expert Systems with Applications. 37 : 6390–6403 : 2010.

Sorescu A.B., Rajesh K.C., and Jaideep C.P. “Sources and Financial Consequences of Radical Innovation: Insights from Pharmaceuticals,”. Journal of Marketing. 67 : 82–102 : 2003.

Ussahawanitchakit P. "Effects of E-Commerce on Export Marketing Strategy and Performance: An Empirical of Thai Firms,". Review of Business Research. 5(3) : 46–54 : 2005.

Vorhies D.W., and Morgan N.A. "A configuration theory assessment of marketing organization fit with strategic type and its relationship with marketing performance,". Journal of Marketing. 67(1) : 100–15 : 2003.

Waldman D.A., Ramírez G.G., House R.J., and Puranam P. "Does Leadership Matter? CEO Leadership Attributes and Profitability Under Conditions of Perceived Environmental Uncertainty,". Academy of Management Journal. 44 : 134–143 : 2001.

Wind J. and Vijay M. "Issues and Opportunities in New Product Development: An Introduction to the Special Issue,". Journal of Marketing Research. 34 : 1–12 : 1997.

Zhou K.Z., Yim C.K., and Tse D.K. "The Effects of Strategic Orientations on Technology- and Market-Based Breakthrough Innovation,". Journal of Marketing. 69 : 42–60 : 2005.

