

The Effect of Physical Fitness Training for Primary Third Students in Primary School Place Second Xinghua City

**Yu Qianyue, Kreeta Promthe,
Wiradee Eakronnarong chai and Yodkhwan Khantiyu**

UdonThani Rajabhat University, Thailand

Corresponding Author, Email: kreeta.pr@udru.ac.th

Abstract

The purpose of this study is 1) through the method of teaching experiment, the experimental group and the control group were compared and analyzed to further verify the effect of improving primary school students' physical exercise; This paper is a quantitative study. The samples are 20 students from Class 3 and 20 students from Class 4, Grade 3 of Xinghua Second Experimental Primary School They were selected by They selected students who were healthy and had no diseases through screening for physical fitness tests before the experiment. After data analysis in SPSS 2.0, they used a simple random sampling method to select 10 boys and 10 girls from Class 3 of Grade 3, as well as 10 girls from Grade 4, as the final experimental group and control group for this study. Using Plan of physical fitness training implementation of the experimental group created by the researcher. Through 3 experts

The research results were found as follows: 1) Through experiments, there is no difference in the effects of traditional physical education and physical training on third-grade primary school student's height, weight, and BMI values. 2) Through experiments, physical training has a more noticeable impact on the physical function-vital capacity of third-grade primary school students. Through experiments, physical training has significant differences in the lung's capacity, sit forward, one-minute skipping rope, standing long jump, and one-minute sit-ups of third-grade primary school students influence there was a difference between the control group and the experimental group at the .05 level. This shows the physical fitness training plan created by the researcher. It has a positive effect on students' official performance.

Keyword: Physical training; Physical fitness; Training effect

Introduction

The health problems of Chinese teenagers in the new era cannot be effectively contained and have caused widespread anxiety and concern in society; the health problem of teenagers has become a pain point and difficulty in the development of our nation. Young students are influenced by exam-oriented education, "put mental training above physical training." the education field attaches great importance to cultural learning and relatively little attention to physical exercise, leading to ordinary adolescent obesity, myopia, insufficient physical activity, the physical health status of familiar adolescent students is worrisome. The people need a certain amount of physical activity to maintain or improve the quality of life, especially for children. Systematic and professional physical training can enhance children's physique, improve children's health, improve or improve children's sports ability.

¹Received: April 23 2024; Revised: May 13 2024; Accepted: May 16 2024

Regarding students' physical fitness, we should not only pay attention to the changes in various indicators but also pay more attention to healthy lifestyles and behaviors. Primary school students are in a period of rapid growth in physical development, which is also a critical period for developing various behavioral habits. Based on this, this study takes the effect of physical training on Grade Three students of The second Experimental Primary School in XingHua as the research object. It conducts targeted physical training experimental research to improve students' various physical qualities and enable the overall development of primary school students' physical and mental health.

According to the law of primary school students' physical development, combined with the current situation of students' physical quality, this paper sorts out the exercise methods suitable for primary school students' physical quality through the physical training in physical education, the conventional teaching syllabus and the comparison before and after the experiment. At the same time, it can provide specific reference for primary school students to carry out physical exercise.

Research Objectives

Objective The study effect physical training of primary school students was compared between the experimental group and the control group

Literature Review

The people need a certain amount of physical activity to maintain or improve the quality of life, especially for children. Systematic and professional physical training can enhance children's physique, improve children's health, improve or improve children's sports ability, Guo, Z.H. (2019).

The childhood is an essential stage for people's physical growth and development, and physical training in children is conducive to the improvement of children's physical fitness. "Physical ability" is a comprehensive, abstract, holistic concept. It is the general term for the overall function of the body, which does not depend on the strength of a particular organ function of the body, but closely related to human health. So children must carry out physical training. Cong, H. (2023)

In more primary school students pay attention to the cultivation of cultural literacy but ignore the physical literacy training, which negatively affects the growth and development of primary school students. Therefore, in daily study, increasing the physical exercise of students is very conducive to students' thinking ability and shapes their comprehensive development. Liang, L.H and Jiang, G.M. (2020)

The physical training undeniably and significantly impacts children's attention improvement, creative thinking and balance quality. At the same time, I hope that in the process of children's physical training, attention should be paid to the cultivate of children's interests and the organization of gameplay and comprehensive physical training activities. Only with all interest can we achieve good results and stimulate children's interest in sports. Parents and schools actively cooperate so children adhere to physical activities and cultivate exercise awareness. Yang Fang (2022).

The physical function training can not only be used to improve the physical quality of junior high school students but also play a positive role in preventing sports injury. During physical function training, it is suggested that the practice content be selected according to the

characteristics of the training stage with the corresponding instruments, and the effect will be more obvious. Yuan, W.H and Zhang, Y. (2022)

Research Methodology

1. Research Methodology

1. Literature and data method

According to the research needs of the paper, through the CNKI database of primary school students, physical fitness and physical training as the keywords, find the research with a high fit with this study, classified, analyzed, and summarized these data to lay a foundation for the theoretical knowledge of this paper.

2. Expert interview method

According to the research needs of this paper, the primary school physical education teachers and relevant leaders were interviewed and investigated, and finally integrated the relevant interview content, combined with the opinions of the interview and the research direction of this paper, were summarized to guide the corresponding optimization suggestions proposed in this paper.

3. Teaching and experiment method

By consulting relevant physical training books and literature to train the experimental subjects, the physical training program and related theories were reasonably arranged, and the physical training was divided into three stages, including the essential training stage, the improvement stage, and the strengthening and consolidation stage.

Bare training stage: it will last for two weeks. The primary purpose and task is to conduct stability exercises through unarmed limbs and trunk movements and train with simple instruments to improve the difficulty of physical training exercises.

4. Mathematical and statistical method

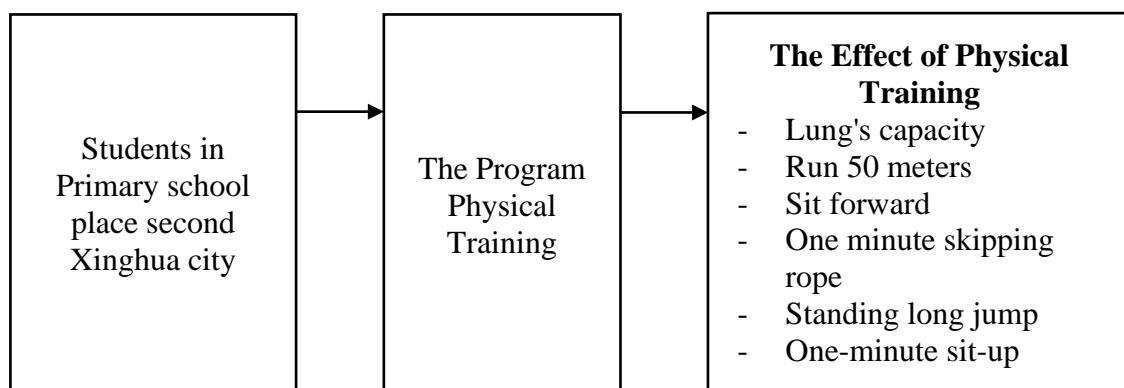
After recovering the test results, the data analysis generally described the questionnaire data according to the relevant knowledge in SPSS22.0. The data results needed by the institute were obtained, and the results were analyzed and summarized accordingly.

2. Source of Data

The research data are mainly obtained through the investigation of relevant papers and experimental methods.

3. Population and Sampling

After screening students who have no diseases and are physically healthy, the experimental subjects will undergo a physical fitness test before the experiment. After data analysis in SPSS 2.0, use simple random sampling to select ten boys and ten girls from Class 3 of Grade 3 and ten boys and ten girls from Class 4 of Grade 3 as the final experimental group and control group for this study. The design of this study consists of two groups of students: the experimental group and the control group.


4. Data Collecting

In the experimental environment, the data related to the study were collected by manipulating variables, and the literature related to this paper was consulted to find the literature with a high degree of agreement with this study. These data were classified, analyzed and summarized

5. Analysis of Data

After the test results were collected, the questionnaire data were analyzed by spss22.0 for general descriptive statistics according to the relevant knowledge in sports statistics, and the data results required for the study were obtained, and the data results were tested by independent sample t-test.

Research Conceptual Framework

Figure 1: Research Conceptual Framework

Research Results

Table 1 Comparison on the body shape between experiment group and control group before experiment

Index	Gender	N	experimental group	control group	t	P
height	male	10	1.234±0.041	1.245±0.051	0.171	0.825
	female	10	1.228±0.048	1.251±0.049	0.168	0.847
weight	male	10	36.833±2.369	37.769±3.961	0.863	0.421
	female	10	35.613±3.687	36.769±3.465	0.902	0.387
BMI	male	10	17.751±1.651	16.569±2.003	1.346	0.289
	female	10	16.592±1.296	17.426±1.967	1.264	0.307

Note: * p <0.05 indicates the significant difference between the test variables

The independent sample T-test showed a P> 0.05, indicating that the difference in body shape between the two groups could have been more obvious and would not have affected the credibility of this experiment.

Table 2 Comparison on the physical fitness between experiment group and control group before experiment

Index	Gender	N	experimental group	control group	t	P
lung's capacity	male	10	1839.823±32.654	1865.641±36.713	1.698	0.079
	female	10	1801.264±29.347	1810.931±28.391	1.723	0.081
Run 50 meters (seconds)	male	10	9.59±0.69	9.47±0.72	1.652	0.086
	female	10	10.17±0.79	10.21±0.80	1.814	0.076
Sit forward flexion (CM)	male	10	3.59±2.64	3.67±2.71	0.856	0.067
	female	10	4.96±1.98	5.01±1.62	0.312	0.061
One minute skipping rope (number)	male	10	99.56±8.96	101.62±7.65	1.693	0.564
	female	10	105.78±5.36	104.98±5.73	1.764	0.321
standing long jump (CM)	male	10	142.63±9.65	143.51±9.03	1.659	0.346
	female	10	138.62±8.79	139.56±7.62	1.674	0.237
one-minute sit-up (number)	male	10	25.63±5.62	25.71±6.32	1.369	0.096
	female	10	23.89±4.91	24.19±4.03	1.654	0.087

Note: * p <0.05 indicates the significant difference between the test variables

Conducting independent sample t-tests on students' physical fitness, the results showed P> 0.05, indicating no difference in physical fitness between the two groups and will not affect the credibility of this experiment.

Table 3 Comparison on the body shape within experiment group before the experiment

Index	Gender	N	Before the experiment group	After the experiment group	t	P
height	male	10	1.234±0.041	1.242±0.069	0.193	0.869
	female	10	1.228±0.048	1.231±0.027	0.176	0.835
weight	male	10	36.833±2.369	38.893±2.369	0.859	0.395
	female	10	35.613±3.687	36.736±3.241	0.893	0.297
BMI	male	10	17.751±1.651	16.751±1.675	1.268	0.276
	female	10	16.592±1.296	16.475±1.326	1.179	0.234

Note: * p <0.05 indicates the significant difference between the test variables

In the experimental group, the results showed P> 0.05, indicating that the physical training had little influence on the body morphology of the third-grade students.

Table 4 Comparison on the physical fitness within experiment group before the experiment

Index	Gender	N	Before the experiment group	After the experiment group	t	P
lung's capacity	male	10	1839.823±32.654	2113.963±39.986	1.107	0.017*
	female	10	1801.264±29.347	1997.362±30.967	1.037	0.023*
Run 50 meters (seconds)	male	10	9.59±0.69	8.29±0.36	0.987	0.013*
	female	10	10.17±0.79	9.39±0.75	1.136	0.026*
Sit forward flexion (CM)	male	10	3.59±2.64	9.61±3.02	0.269	0.004*
	female	10	4.96±1.98	10.12±3.75	0.217	0.002*
One minute skipping rope (number)	male	10	99.56±8.96	119.97±8.64	1.469	0.029*
	female	10	105.78±5.36	123.85±6.53	1.501	0.019*
standing long jump (CM)	male	10	142.63±9.65	157.23±4.22	1.269	0.002*
	female	10	138.62±8.79	148.51±4.12	1.196	0.001*
one-minute sit-up (number)	male	10	25.63±5.62	31.72±4.63	1.267	0.003*
	female	10	23.89±4.91	28.32±5.57	1.196	0.002*

Note: * p <0.05 indicates the significant difference between the test variables

By T-test for the physical function of male and female students, the results showed that P <0.05 (P=0.017, P=0.023), indicating that physical training had some differences in the biological function of third-grade primary school students, but the difference was not particularly obvious.

The data show that physical training has significant differences in the physical fitness of the third-grade students (P <0.05), especially for the sitting forward flexion, standing long jump, and one-minute sit-ups (P <0.01).

Table 5 Comparison on the body shape within group in control group

Index	Gender	N	Before the control group	After the control group	t	P
height	male	10	1.245±0.051	1.298±0.096	0.136	0.864
	female	10	1.251±0.049	1.276±0.063	0.127	0.831
weight	male	10	37.769±3.961	38.061±2.397	0.761	0.379
	female	10	36.769±3.465	36.923±2.122	0.836	0.269
BMI	male	10	16.569±2.003	17.397±1.376	1.217	0.197
	female	10	17.426±1.967	17.987±1.053	1.069	0.267

Note: * p <0.05 indicates the significant difference between the test variables.

In the control group, the body shape of the students showed $P > 0.05$, indicating that the traditional physical education teaching had little influence on the body shape of the third-grade students.

Table 6 Comparison on the physical fitness within group in control group

Index	Gender	N	Before the control group	After the control group	t	P
lung's capacity	male	10	1865.641±36.713	1967.759±35.697	1.761	0.032*
	female	10	1810.931±28.391	1905.931±32.293	1.697	0.049*
Run 50 meters (seconds)	male	10	9.47±0.72	8.96±0.69	1.162	0.096
	female	10	10.21±0.80	9.67±0.75	1.267	0.087
Sit forward flexion (CM)	male	10	3.67±2.71	6.52±2.67	0.754	0.004*
	female	10	5.01±1.62	7.63±2.67	0.364	0.005*
One minute skipping rope (number)	male	10	101.62±7.65	105.42±4.68	1.967	0.461
	female	10	104.98±5.73	109.54±4.39	1.861	0.311
standing long jump (CM)	male	10	143.51±9.03	149.32±6.37	1.421	0.205
	female	10	139.56±7.62	142.26±5.63	1.139	0.129
one-minute sit-up (number)	male	10	25.71±6.32	27.21±4.89	1.113	0.102
	female	10	24.19±4.03	26.09±3.97	1.127	0.121

Note: * $p < 0.05$ indicates the significant difference between the test variables.

In the independent sample T-test of students' physical function, the results showed $P < 0.05$ ($P=0.032$, $P=0.049$), indicating that the difference in traditional physical education is not particularly obvious in physical function.

In addition, the results showed $P > 0.05$ except for the anterior flexion ($P=0.004$, $P=0.005$), which indicates that there is no difference between traditional physical education teaching for primary school students' 50 meters running, one-minute rope skipping, standing long jump, and one-minute sit-up. It has a significant impact on the third-grade students' sitting forward flexion.

Table 7 Comparison on the body shape between experiment group and control group after the experiment

Index	Gender	N	Before the experiment group	After the control group	t	P
height	male	10	1.242±0.069	1.298±0.096	0.296	0.175
	female	10	1.231±0.027	1.276±0.063	0.375	0.274
weight	male	10	38.893±2.369	38.061±2.397	0.963	0.389
	female	10	36.736±3.241	36.923±2.122	0.947	0.259
BMI	male	10	16.751±1.675	17.397±1.376	1.217	0.216
	female	10	16.475±1.326	17.987±1.053	1.109	0.201

Note: * p <0.05 indicates the significant difference between the test variables.

Through the experiments, independent sample T-test of body shape in the experimental groups and control group, the results showed P > 0.05, indicating that the traditional physical education course teaching and physical training had little influence on the physical shape of the Grade 3 students.

Table 8 Comparison on the physical fitness between experiment group and control group after the experiment

Index	Gender	N	Before the experiment group	After the control group	t	P
lung's capacity	male	10	2113.963±39.986	1967.759±35.697	0.691	0.001*
	female	10	1997.362±30.967	1905.931±32.293	0.963	0.003*
Run 50 meters (seconds)	male	10	8.29±0.36	8.96±0.69	1.271	0.108
	female	10	9.39±0.75	9.67±0.75	1.217	0.133
Sit forward flexion (CM)	male	10	9.61±3.02	6.52±2.67	0.351	0.002*
	female	10	10.12±3.75	7.63±2.67	0.275	0.001*
One minute skipping rope (number)	male	10	119.97±8.64	105.42±4.68	0.968	0.000*
	female	10	123.85±6.53	109.54±4.39	0.869	0.000*
standing long jump (CM)	male	10	157.23±4.22	149.32±6.37	1.117	0.001*
	female	10	148.51±4.12	142.26±5.63	1.021	0.003*
one-minute sit-up (number)	male	10	31.72±4.63	27.21±4.89	1.065	0.004*
	female	10	28.32±5.57	26.09±3.97	1.027	0.012*

Note: * p <0.05 indicates the significant difference between the test variables

By independent sample T-test of students' physical function, the results showed $P < 0.05$ ($P=0.001$, $P=0.003$), indicating that the influence of physical training on the biological function of third-grade primary school students is better than that of traditional physical education.

The independent sample T-test of the students' body shape showed that the physical training showed significant differences in forward bending, one-minute rope skipping, long jump, standing, and one-minute supine rise, namely $P < 0.05$, which did not affect the 50-meter running.

Discussion

1. The influence of physical fitness training on primary school students' body shape

The results are: the heights of boys and girls in the experimental group before the experiment were 1.234 ± 0.041 , respectively. cm, 1.228 ± 0.048 cm, weights are 36.833 ± 2.369 kg, 35.613 ± 3.687 kg, respectively, and BMI values are 17.751 ± 1.651 , 16.592 ± 1.296 respectively. After the experiment in the control group, the heights of boys and girls were 1.298 ± 0.096 cm and 1.276 ± 0.063 cm, respectively, the weights were 38.061 ± 2.397 kg and 36.923 ± 2.122 kg, respectively, and the BMI values were 17.397 ± 1.376 and 17.987 ± 1.053 respectively. Through the experiment a, the independent sample T-test was conducted on the body shape of the students in the experimental group and the control group. The result showed that $P > 0.05$, indicating that neither traditional physical education nor physical training has much impact on the body shape of third-year primary school students. This view is consistent with the view of Guo, Z.H. (2019) mentioned in the paper that systematic and professional physical training has little impact on body shape.

2. The influence of physical fitness training on the vital capacity of primary school students

Physical training can enhance the contraction strength of respiratory muscles and increase the range of thoracic movement, thus increasing lung capacity. In addition, physical training also promotes the development of the respiratory system, enhances the respiratory system's ability to adapt to temperature changes, and resists respiratory infectious diseases. Physical training can boost the body's tissue cells' ability to absorb and utilize sugar and increase liver glycogen and muscle glycogen storage. Physical training can also improve the body's ability to regulate glucose metabolism. Through experiments, traditional physical education and physical training have a more noticeable impact on third-grade primary school students' body shape and physical function - vital capacity. After the experiment, the critical capacities of boys and girls in the experimental group were 2113.963 ± 39.986 and 1997.362 ± 30.967 , respectively. After the control group experiment, boys' and girls' vital capacities were 1967.759 ± 35.697 and 1905.931 ± 32.293 , respectively. An independent sample T-test was conducted on students' physical functions, and the results showed that $P < 0.05$ ($P=0.001$, $P=0.003$), indicating that physical training has a better impact on the biological functions of third-year primary school students than traditional physical education teaching. This view is consistent with Cong, H. (2023), who mentioned in the paper that physical training during primary school is conducive to improving children's physical fitness.

3. The influence of physical training on the physical quality of primary school students

Through experiments, traditional physical education and physical training have little impact on the speed quality of third-grade primary school students. After the experiment, the 50-meter running times of boys and girls in the experimental group were 8.29 ± 0.36 seconds and 9.39 ± 0.75 seconds, respectively. In the control group, the 50-meter running times of boys and girls after the experiment were 8.96 ± 0.69 seconds and 9.67 ± 0.75 seconds, respectively, $P>0.05$. This shows that it does not impact the 50-meter run of third-grade primary school students. This study's results are consistent with the eight weeks of 6km running exercise mentioned in the paper (Victor, O and Vipene, J.) on students' speed quality. Comparing the before and after data, the P value is >0.05 .

The impact of physical training on primary school students' agility quality

Through experiments, it was found that traditional physical education and physical training have a more noticeable impact on the agility quality of third-grade primary school students. The boys and girls in the experimental group skipped 119.97 ± 8.64 times and 123.85 ± 6.53 times per minute. The boys and girls in the control group missed 105.42 ± 4.68 and 109.54 ± 4.39 times, respectively. An independent sample T-test was performed on the data, $P<0.05$. This view is consistent with the view that participation in self-created combinations of sports games proposed in the paper Tang, R. M, (2021) can help primary school students improve their physical fitness and is especially helpful in improving the agility of primary school students. There are two reasons: First, a one-minute rope skipping exercise can reflect students' physical agility. If students have good agility, the probability of physical injuries during exercise can be reduced. Special training is provided for sensitive qualities to improve students' adaptability during exercise to respond quickly in emergencies, adjust their exercise status promptly, and avoid injuries during exercise. Second, one-minute rope skipping can quickly adjust the speed and direction of movement. During the speed ladder exercise, students need to change their movements according to the instructions given by the teacher. Through this exercise, they can improve their reaction speed and exercise their coordination ability, which plays a vital role in cultivating agility; during physical training, the body needs repeated adjustments. After long-term and high-frequency exercise, their sensitivity will be significantly improved. As Dong, J.Q. (2022) believes in the paper, both the teaching and training of figure rope skipping and regular physical education teaching can have a positive impact on the strength and quality of primary school students, and the effect is more significant, helping to improve the strength and quality of students.

Effects of physical training on flexibility quality of primary school students

Through experiments, it was found that traditional physical education and physical training have a more noticeable impact on the flexibility quality of third-grade primary school students. The sitting forward flexion of boys and girls in the experimental group was 9.61 ± 3.02 cm and 10.12 ± 3.75 cm, respectively, while the boys and girls in the control group were 6.52 ± 2.67 cm and 7.63 ± 2.67 cm, respectively. An independent sample T-test was performed on the data, $P<0.05$. This result is consistent with the physical function training course mentioned in the paper by Wang Junsheng, et al. (2022), which takes action pattern learning as the main line, combines the movement development window period of primary school students, gives priority to the development of fundamental movement skills of primary school students, and has apparent changes in the flexibility quality of primary school students. The views are the same.

The impact of physical training on the strength and quality of primary school students

Through experiments, it was found that traditional physical education and physical training have a more noticeable impact on the strength and quality of third-grade primary school students. The standing long jumps of boys and girls in the experimental group were 157.23 ± 4.22 cm and 148.51 ± 4.12 cm, respectively. The vertical long jumps of boys and girls in the control group were 149.32 ± 6.37 cm and 142.26 ± 5.63 cm, respectively. An independent sample T-test was conducted on the data, $P < 0.05$. This result is consistent with the article by Yuan, W.H and Zhang, Y. (2022) that the standing long jump and cross quadrant jump significantly affect students' core strength.

The impact of physical training on the core qualities of primary school students

Through experiments, traditional physical education teaching and physical training have a more noticeable impact on the core qualities of third-grade primary school students. The number of sit-ups per minute for boys and girls in the experimental group was 31.72 ± 4.63 and 28.32 ± 5.57 , respectively. The number of sit-ups per minute for boys and girls in the control group was 27.21 ± 4.89 and 26.09 ± 3.97 , respectively. An independent sample T was performed on the data. Test, $P < 0.05$. This result is consistent with the article by (Yang Z.C and Jiao, X.G 2023), who believes that scientific and reasonable physical training for primary school students is highly beneficial to the improvement of primary school students' flexibility, agility, speed, strength, and other sports qualities. More importantly, it is for the core of students. The effect of strength is more prominent. After data comparison, $P < 0.01$.

Conclusion

This experimental study mainly carries out training from the aspects of body shape, vital capacity and physical quality

1) Through experiments, there is no difference in the effects of traditional physical education and physical training on third-grade primary school student's height, weight, and BMI values.

Physical training can help primary school students develop physical coordination and balance. By engaging in various sports and physical activities, they can better control their body's movements and postures, thereby improving body proportions and posture. However, it should be noted that for primary school students, physical training should be appropriately adjusted and guided according to their age, physical condition, and stage of development. Excessive training may hurt the body and will not change the body shape much. At the same time, a reasonable diet and adequate rest are important factors in maintaining good health and shape.

2) Through experiments, physical training has a more noticeable impact on the physical function-vital capacity of third-grade primary school students.

Physical training can enhance the contraction strength of respiratory muscles and increase the range of thoracic movement, thus increasing lung capacity. Regular participation in physical training can increase protein synthesis in myocardial cells, thicken myocardial fibers, and increase myocardial contraction force, which can make the heart pump more energy every time it contracts. The blood is ejected into the blood vessels, causing the heart's stroke volume to increase. Long-term physical exercise can increase ventricular capacity.

3) Through experiments, physical training has significant differences in the sitting and forward bending, one-minute rope skipping, standing long jump, and one-minute sit-ups of third-grade primary school students ($P<0.05$); on the contrary, it does not affect the 50-meter running of third-grade primary school students influence.

The factors that affect midway running mainly include step length and stride frequency. The speed of the 50-meter dash is also closely related to the strength and flexibility of the contestants. In the process of participating in strength and speed training in each class, their legs will fold frequently, which helps to improve their leg strength and enhance their explosive power during exercise. When their ankles hit the ground, they can bounce up quickly, which exercises the primary school students' physical strength. Ankle strength. There was no noticeable difference in the test results of the female students in the experimental group before and after the experiment. This may be because the female students in primary school lacked a sense of collective honor and did not pay enough attention to the test results, so their scores were insignificant. Traditional physical education teaching can also promote the improvement of students' physical fitness to a certain extent, so the test results of the control group have also improved. However, compared with the experimental group, the effect of enhancing the 50-meter sprint performance is not ideal. This is due to the traditional content and form of physical education teaching being relatively dull and not stimulating students' enthusiasm for participation.

Special training is provided for sensitive qualities to improve students' adaptability during exercise to respond quickly in emergencies, adjust their exercise status promptly, and avoid injuries during exercise. One-minute rope skipping can quickly adjust the speed and direction of movement. During the speed ladder exercise, students need to change their movements according to the instructions given by the teacher. Through this exercise, they can improve their reaction speed and exercise their coordination ability, which plays a vital role in cultivating agility; during physical training, the body needs repeated adjustments. After long-term and high-frequency exercise, their sensitivity will be significantly improved.

Flexibility can enable students to have good physical coordination and avoid injuries during exercise. At the same time, flexibility can also enhance the effect of students' training, eliminate fatigue, and restore physical strength quickly. In the physical training of primary school students, static stretching after exercise can improve the physical flexibility of primary school students. In addition, after the sports program, students will perform stretching training. The main stretched parts include the lower, upper, and waist limbs. Through stretching, stretching exercises can not only relax muscles but also improve body flexibility. During the training of throwing events, it can not only enhance the upper limb strength of primary school students but also improve the coordination and flexibility of the body to a certain extent.

The performance of the vertical long jump mainly depends on the strength and explosive power of the legs. Participants need to coordinate their legs and upper limbs to concentrate the whole body's strength on the soles of the feet.

Therefore, the results of the standing long jump competition could be better than There is a close relationship between the leg strength of primary school students. Their leg strength can be effectively improved after prolonged exercise. Standing multi-level jumps, cross jumps, and other projects can exercise students' lower limb strength, laying a solid foundation for achieving better results in standing long jump sports. ; Since students have already been exposed to the long jump event during physical training, most students have mastered the skills of this sport, so their standing long jump results have also significantly improved during the test.

For two reasons, one-minute sit-ups can reflect students' abdominal strength and test their physical endurance. Waist and abdominal strength are crucial for sports. Muscular abdominal strength can maintain the stability of the trunk and enhance body coordination. After long-term physical exercise, students' enthusiasm for participating in sports can be effectively enhanced, and their overall physical quality will significantly improve. The waist and abdomen are important supporting points for the body's strength. As students' physical development and age increase, their waist and abdomen strength will improve significantly. In addition, sports can also improve students' physical endurance. The primary school student stage is a critical period for exercising physical endurance.

Suggestions

- 1) There are many ways and means of physical training, and the number of experimental population should be increased for testing in the future research
- 2) Targeted exercise prescription can be formulated according to different gender, age and physique of primary school students

References

Cong, H. (2023). Exploring the importance and training methods of children's physical training [J]. *Sports-Leisure: Popular sports*, 2023 (9), 0037-0039.

Dong, J.Q. (2022). The influence of teaching and training of figure rope skipping on pupils' physical quality and self-evaluation of physical education learning [D]. Liaoning Normal University, 2022.

Guo, Z.H. (2019). Study on the necessity of physical training for children [J]. *Sports World (Academic edition)*, 2019 (04), 154 + 150.

Liang, L.H and Jiang, G.M. (2020). Study on the necessity of physical training for primary school students [J]. *Scientific and technological achievements*, 2020, 29 (5), 218-218.

Tang, R. M (2021). Experimental study on the influence of sports game combination on the physical fitness of primary school students [D]. *Shanghai Institute of Physical Education*, 2021.

Victor, O and Vipene, J. (2014). Effect of Eight Weeks 6km Run Work/Training Programme on the Physical Fitness Levels of Children [J]. *August 2014 Pediatric Exercise Science Research on Humanities and Social Sciences (RHSS)*, 4, USA(19), 49-53

Wang, J. H, Dong, Y.G and Chen Xiulan (2022). An empirical study on the effects of physical function training courses on pupils' physical health [J]. *Youth Sports*. 2022 (06), 43-45.

Yang, F. (2022). Experimental study on the effects of physical training on cognitive ability and physical fitness in young children aged 5-6 years [D]. *Chengdu Institute of Physical Education*, 2022.

Yang Z. C and Jiao, X.G (2023). Exploration of the application of track and field sports in the physical training of primary school students [J]. *Athletics*, 2023 (06), 46-48.

Yuan, W. H and Zhang, Y. (2022). Study on the influence of figure rope skipping practice on physical health of 8-9 years [J]. *Sports Science and Technology Literature Bulletin*, 2022, 30 (06), 131-134 + 145.