

ความเต็มใจจ่ายของผู้ใช้บริการต่อคุณลักษณะพื้นที่สีเขียวในกรุงเทพมหานคร Willingness to Pay for Green Areas Attributes of Users in Bangkok

บุษกร ก้อนทอง^{1*} สุวรรณ ประนีตวัตถุล² และนรงค์ วีระไวยะ³
Bussagorn Kontong¹ Suwanna Praneetvataku² and Narong Veeravaitaya³

¹สาขาวิชาการจัดการทรัพยากร คณะเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ เขตจตุจักร กรุงเทพฯ. 10900

¹Resource Management Program, Faculty of Economics, Kasetsart University, Chatuchak, Bangkok 10900

²ภาควิชาเศรษฐศาสตร์เกษตรและทรัพยากร คณะเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ เขตจตุจักร กรุงเทพฯ 10900

²Department of Agricultural and Resource Economics, Faculty of Economics, Kasetsart University, Chatuchak, Bangkok 10900

³ภาควิชาชีววิทยาประมง คณะประมง มหาวิทยาลัยเกษตรศาสตร์ เขตจตุจักร กรุงเทพฯ 10900

³Department of Fisher Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900

*Corresponding author E-mail: Apollo-nm@hotmail.com

(Received: 23 June 2017; Accepted: 19 October 2017)

Abstract: Green area is an important factor determining the quality of life of urban people. This research aims to analyze the satisfaction and willingness to pay of urban users for the attributes of green areas in Bangkok. Primary data were collected using questionnaires in interviews with green area users, consisting of 300 samples. Data were analyzed by choice modelling technique. The results showed that most of the users wanted more fast-growth trees. The users focused on green areas with tree-labeling, special zones and environmental learning centers. After improving the above attributes, it was found that they were willing to pay 29.45 baht/person/time to visit the green area. In addition, when increasing shade trees, they were more satisfied and were willing to pay 6.5 baht for a 4-acre increase in the area of shade trees. Therefore, relevant government agencies, the Park bureau and the Environment bureau should consider planting more fast-growing trees to provide a larger green area. Moreover, increasing the area of shade trees, putting up tree-labels with a description of their attributes, enhancing the environmental learning center and special zones, such as an herbal zone, are suggested for the improvement of quality of life for urban people in Bangkok.

Keywords: Green areas, choice model, willingness to pay, Bangkok

บทคัดย่อ: พื้นที่สีเขียว ถือเป็นตัวชี้วัดหนึ่ง ที่สามารถบ่งบอกถึงคุณภาพชีวิตคนในเมืองได้ การวิจัยครั้งนี้มีวัตถุประสงค์ หลักเพื่อ ประเมินความพึงพอใจและความเต็มใจจ่ายของผู้ใช้บริการที่มีต่อคุณลักษณะของพื้นที่สีเขียวในกรุงเทพมหานคร การวิจัยนี้ได้ทำการรวบรวมข้อมูลปฐมภูมิโดยใช้แบบสอบถามสัมภาษณ์กลุ่มตัวอย่างผู้ใช้บริการพื้นที่สีเขียวในกรุงเทพมหานคร จำนวน 300 ตัวอย่าง ใช้เทคนิคแบบจำลองทางเลือก ซึ่งผลการศึกษา พบว่า กลุ่มตัวอย่างผู้ใช้บริการส่วนใหญ่ต้องการให้มี การปลูกไม้เตี้ยร่วงมากที่สุด และกลุ่มตัวอย่างจะให้ความสำคัญกับพื้นที่สีเขียวที่มีการติดป้ายชื่อต้นไม้ มีการเพิ่มโซนพิเศษ และ มีแหล่งเรียนรู้ด้านสิ่งแวดล้อม โดยการเปลี่ยนแปลงเป็นคุณลักษณะดังกล่าว พบว่าผู้ใช้บริการมีความยินดีจ่าย 29.45 บาท/ คน/ครั้ง ของการเข้าใช้บริการพื้นที่สีเขียว และการมีพื้นที่ไม้ยืนต้นเพิ่มขึ้น จะทำให้ผู้ใช้บริการมีความยินดีจ่ายเท่ากับ 6.50

บทต่อการเพิ่มพื้นที่ไม้ยืนต้น 10 ไร่ ดังนั้นภาครัฐ และสำนักงานสาธารณสุข ควรพิจารณาเพิ่มพื้นที่ไม้ยืนต้น ติดป้ายชี้อีกด้วยเพื่อให้สอดคล้องกับคุณลักษณะที่ผู้ใช้บริการต้องการ ซึ่งจะเป็นการเพิ่มคุณภาพชีวิตที่ดีให้แก่ผู้ใช้บริการพื้นที่สีเขียวในกรุงเทพมหานครอีกด้วย

คำสำคัญ: พื้นที่สีเขียว แบบจำลองทางเลือก ความเต็มใจจ่าย กรุงเทพมหานคร

คำนำ

กรุงเทพมหานคร เมืองหลวงของประเทศไทย นับว่าเป็นศูนย์กลางความเจริญทุก ๆ ด้าน ความเจริญ เหล่านี้เองที่เปรียบเสมือนดาบสองคมที่ให้ทั้งข้อดีและข้อเสีย เมื่อมีความเจริญก็มีความเสื่อม ตามมาเช่นกัน ปัจจุบันทรัพยากรธรรมชาติมีความเสื่อม โกรธลงทุกขณะ เพราะมนุษย์ได้นำทรัพยากรธรรมชาติมาใช้ตอบสนองความต้องการทั้งในภาคการผลิต ภาคอุตสาหกรรม และกิจกรรมอื่น ๆ อย่างมาก many (วิชาษา และดวงรัชนี, 2559) ซึ่งมีงานวิจัยจำนวนมากที่ชี้ให้เห็นว่าพื้นที่สีเขียวเป็นปัจจัยสำคัญที่จะนำไปสู่สุขภาพที่ดีของคนเมือง เมื่อจากพื้นที่สาธารณะเหล่านี้มีประโยชน์ทั้งทางด้านจิตใจ และมีประโยชน์ต่อสุขภาพของผู้อยู่อาศัยในชุมชน ถือเป็นการเพิ่มทางเลือกให้กับคนเมืองสำหรับการพักผ่อนหรือออกกำลังกายในเวลาว่าง (นิคม และ Kung, 2557)

พื้นที่สีเขียวของกรุงเทพมหานคร มีสัดส่วนต่อประชากรต่อพื้นที่สีเขียวเท่ากับ 3.3 ตารางเมตรต่อคน นอกจากรั้น พื้นที่สีเขียวที่มีอยู่ก็เป็นต้นไม้ที่จัดสร้างขึ้นมาไม่ใช่ต้นไม้ใหญ่แบบที่ใช้งานหรือเป็นปอดให้หายใจได้ทั้งหมด เพราะยังเป็นต้นไม้เล็ก ซึ่งกระบวนการทำงานทางระบบนิเวศก์แตกต่างกัน อีกทั้งคุณลักษณะพื้นที่สีเขียวนั้น จะต้องมีต้นไม้ใหญ่หรือไม้ยืนต้นเป็นองค์ประกอบหลักของพื้นที่สีเขียว เนื่องจากไม้ยืนต้นสามารถเสริมสร้างคุณค่าทางสิ่งแวดล้อมได้ดีกว่าไม้ล้มลุก (ฉัตรชัย, 2557) รวมถึงสภาพแวดล้อมและการจัดการพื้นที่สีเขียวประเภทสวนสาธารณะ ที่ขาดการประชาสัมพันธ์ ขาดการบำรุงรักษา (อุบัตรัตน์ และ จิราภรณ์, 2557) ทำให้คุณลักษณะบางอย่างของพื้นที่สีเขียวนั้นไม่ตรงกับประสิทธิภาพที่ควรมี จึงเป็นเรื่องสำคัญที่เราจะต้องใส่ใจในกระบวนการจัดการดูแลเพื่อให้มีต้นไม้ใหญ่ที่เหมาะสมกับพื้นที่เมือง ความมีการกำหนดนโยบาย เพื่อให้ประชาชนมีคุณภาพชีวิตที่ดี มีสวนสาธารณะ

สนับสนุนให้ประชาชนได้มีส่วนร่วม ในการคิดวางแผนพัฒนาชุมชนของตนเอง (รัตนา แซ่สุกกลักษณ์, 2559) ดังนั้นการดำเนินการเพื่อจัดการพื้นที่สีเขียวจึงมีความสำคัญ ช่วยส่งผลดีต่อสภาพแวดล้อมเมือง สร้างสิ่งแวดล้อมที่ร่วมเรื่นรื่นอยู่อาศัยอย่างยั่งยืนและเป็นการส่งเสริมคุณภาพชีวิตที่ดีให้แก่คนเมือง (ปุณยนุช, 2556)

จากประเด็นดังกล่าวที่กล่าวมาแล้วข้างต้น แสดงให้เห็นแล้วว่าพื้นที่สีเขียวมีความสำคัญต่อคุณภาพชีวิตของคนในชุมชน แต่ด้วยปัจจัยหลายอย่างทำให้การเพิ่มพื้นที่สีเขียวในปัจจุบันเป็นไปได้ยาก ในขณะที่การพัฒนาและปรับปรุงพื้นที่สีเขียวให้เหมาะสมตามความต้องการของประชาชนมีความเป็นไปได้มากกว่า ดังนั้นการศึกษาเรื่องคุณลักษณะของพื้นที่สีเขียวที่ประชาชนต้องการจะมีความสำคัญ ช่วยตอบโจทย์ให้พื้นที่สีเขียวที่มีอยู่อย่างจำกัดนั้น มีประโยชน์และเกิดประสิทธิภาพสูงสุดต่อคนในชุมชน โดยในการศึกษาครั้งนี้ ได้ทำการศึกษาคุณลักษณะของพื้นที่สีเขียว และความพึงพอใจและความเต็มใจจ่ายของประชาชนต่อคุณลักษณะของพื้นที่สีเขียว เพื่อเป็นประโยชน์ต่อห่วงงานผู้รับผิดชอบที่เกี่ยวข้อง ในการใช้ข้อมูลเป็นแนวทางในการพิจารณา เพื่อไปพัฒนาพื้นที่สีเขียวอย่างเหมาะสมและมีประสิทธิภาพยั่งยืนต่อไป โดยการวิจัยในครั้งนี้มีวัตถุประสงค์เพื่อประมวลสถานภาพและการจัดการพื้นที่สีเขียวในกรุงเทพมหานคร และเพื่อวิเคราะห์ความพึงพอใจและความเต็มใจจ่าย ต่อคุณลักษณะของพื้นที่สีเขียวในกรุงเทพมหานคร

อุปกรณ์และวิธีการ

การเก็บรวบรวมข้อมูล

ข้อมูลที่ใช้ในการศึกษาแบ่งออกเป็น 2 ประเภท คือ ข้อมูลทุติยภูมิ ได้จากการรวมข้อมูลจากเอกสารรายงาน ของหน่วยต่าง ๆ ที่เกี่ยวข้อง รวมทั้งรายงานทางวิชาการและวิทยานิพนธ์ที่ได้ทำการศึกษาในเรื่องเกี่ยวกับพื้นที่สีเขียวมาแล้ว ส่วนข้อมูลปฐมภูมิ นั้นเป็นการเก็บ

ข้อมูลประกอบการกำหนดชุดคุณลักษณะและระดับของคุณลักษณะต่าง ๆ ของพื้นที่สีเขียว จึงทำการสัมภาษณ์เกี่ยวกับการจัดการหรือดูแลพื้นที่สีเขียวของกรุงเทพมหานคร และใช้แบบสอบถามในการลงพื้นที่เก็บข้อมูล โดยมีระยะเวลาในการดำเนินการวิจัยตั้งแต่เดือนตุลาคม ปีพ.ศ. 2559 ถึงเดือนมิถุนายน ปี พ.ศ. 2560

1. กลุ่มตัวอย่างและขนาดตัวอย่าง ใช้แบบสอบถามสัมภาษณ์กลุ่มตัวอย่างผู้ใช้บริการพื้นที่สีเขียวที่อาศัยอยู่ในเขตกรุงเทพมหานครโดยทำการสัมภาษณ์กลุ่มตัวอย่างจำนวน 300 ตัวอย่าง ซึ่งเป็นขนาดตัวอย่างขั้นต่ำที่เหมาะสมสำหรับการศึกษาด้วยวิธีแบบจำลองทางเลือก (Rose and Bliemer, 2013) มีขั้นตอนดังต่อไปนี้

ขั้นตอนที่ 1 เลือกประเภทของพื้นที่สีเขียว โดยการศึกษานี้ ทำการศึกษาพื้นที่สีเขียวประเภทสวนสาธารณะ และเลือกสวนสาธารณะหลักของกรุงเทพมหานคร จำนวนแบ่งสวนสาธารณะหลักของกรุงเทพมหานครทั้ง 32 สวน ออกเป็น 7 ประเภท ได้แก่ สวนหย่อมขนาดเล็ก สวนหมู่บ้าน สวนชุมชน สวนระดับย่าน สวนระดับเมือง สวนเฉพาะทาง และสวนถนน (สำนักสิ่งแวดล้อม กรุงเทพมหานคร, 2560)

ขั้นตอนที่ 2 ทำการเลือกพื้นที่สวนสาธารณะระดับชุมชนและระดับหมู่บ้าน เนื่องจากมีจำนวนมากที่สุดในสวนสาธารณะหลักของกรุงเทพมหานครและมีขอบเขตพื้นที่ใกล้เคียงกัน และสุ่มเลือกพื้นที่สวนสาธารณะที่มีประชาชนเข้าไปใช้มากที่สุด ครึ่งหนึ่งของแต่ละประเภท โดยสวนสาธารณะประเภท สวนระดับชุมชน มี 6 สวน และสวนระดับหมู่บ้าน มี 6 สวน รวม 12 สวน ใช้การสุ่มตัวอย่างแบบโควตา (quota sampling) โดยแบ่งตัวอย่างที่สุ่มประชากรในแต่ละสวนที่ได้เลือกจำนวนเท่ากัน คือ สวนละ 25 ตัวอย่าง

2. เครื่องมือที่ใช้ในการวิจัย ได้แก่ แบบสอบถาม (questionnaire) ที่สร้างขึ้นจากการรวบรวมข้อมูลทุกดิจิทัล และการเก็บรวบรวมข้อมูลภาคสนามประกอบไปด้วยส่วนของพฤติกรรมการใช้บริการพื้นที่สีเขียว ส่วนของแบบจำลองทางเลือก และส่วนของข้อมูลทางเศรษฐกิจ และสังคมของผู้ตอบแบบสอบถาม

การสร้างแบบสอบถามในส่วนของแบบจำลองทางเลือก เริ่มจากการกำหนดคุณลักษณะ และระดับของคุณลักษณะพื้นที่สีเขียวที่ใช้ในการศึกษา โดยการศึกษาคุณลักษณะและระดับของคุณลักษณะพื้นที่สีเขียวนั้น มาจากการตรวจสอบงานวิจัยเบื้องต้น และจากการสัมภาษณ์ผู้เชี่ยวชาญ ซึ่งคุณลักษณะที่ได้ มาจากข้อมูลข้อเสนอแนะจากสำนักสวนสาธารณะที่ประชากรต้องการย้อนหลัง 5 ปี เป็นคุณลักษณะพื้นฐานที่ทุกสวนสาธารณะสามารถมีได้ (ตารางที่ 1) โดยคุณลักษณะที่ได้ ได้แก่ คุณลักษณะขนาดพื้นที่ (site) มีระดับของคุณลักษณะคือ 15-25 และ 50 ไร่ คุณลักษณะสัดส่วนไม่ยืนต้นต่อไม่ต้นเล็กหรือไม่พุ่มต่อพื้นที่สำหรับนันทนาการหรือสิ่งก่อสร้าง มีระดับของคุณลักษณะคือ 20:70:10:50:20:30 และ 60:30:10 คุณลักษณะโซนพิเศษ (zone) มีระดับของคุณลักษณะคือ มีและไม่มีโซนพิเศษ คุณลักษณะป้ายชื่อต้นไม้ (LAB) มีระดับของคุณลักษณะคือ มีและไม่มีการติดป้ายชื่อต้นไม้ คุณลักษณะแหล่งเรียนรู้ด้านสิ่งแวดล้อม (STU) มีระดับของคุณลักษณะคือ มีและไม่มีแหล่งเรียนรู้ด้านสิ่งแวดล้อม และคุณลักษณะค่าบริการการเข้าใช้พื้นที่สีเขียว (CHA) มีระดับของคุณลักษณะคือ 0-5 และ 10 บาท/คน/ครั้ง ของการเข้าใช้บริการพื้นที่สีเขียว

จากนั้นทำการกำหนดชุดทางเลือก หากต้องการที่จะวิเคราะห์ตัวแปรที่มีผลต่อระดับความพึงพอใจ จะต้องนำค่าตัวแปรทั้งหมดมาผสานกัน โดยในการศึกษาครั้งนี้ได้ทางเลือกทั้งหมด 16 ทางเลือก จึงดำเนินการกำหนดชุดทางเลือก (choice set) เพื่อใช้ในการสัมภาษณ์ โดยแต่ละชุดทางเลือกประกอบด้วย 3 ทางเลือก โดย 2 ทางเลือกแรกมาจากการวิธี orthogonal factorial design และทางเลือกที่ 3 เป็นทางเลือกแบบ “Opt-Out” สำหรับผู้บริโภคที่ไม่พึงพอใจทางเลือกที่นำเสนอให้ใน 2 ทางเลือกแรก (ภาพที่ 1) ดังนั้น จากทางเลือกทั้งหมด 16 ทางเลือก จะสามารถสร้างชุดทางเลือกได้ทั้งหมด 8 ชุดทางเลือก จากชุดทางเลือกทั้งหมด 8 ชุด จะได้รูปแบบแบบสอบถามสำหรับการสัมภาษณ์ 2 รูปแบบ คือ รูปแบบ A และรูปแบบ B ซึ่ง


รูปแบบของแบบสอบถามจะนำไปสัมภาษณ์กลุ่มตัวอย่าง

รูปแบบละ 150 ตัวอย่าง

Table 1. The different attributes and levels of the green area, defined in the choice set of questionnaires.

Attribute	Levels of attribute
Site of green area (SITE)	– 15 Rai – 25 Rai – 50 Rai
Shaded tree (TREE): shrub (SHRUB): recreation area or building	– 20: 70: 10 – 50: 20: 30 – 60: 30: 10
Special zone (ZONE) (i.e. Herbal zone and Rare Species zone)	– Without special zone – With special zone (PZ)
Tree-label (LAB)	– Without tree-label
Description of the plant characteristics	– With tree-label (HL)
Environmental learning center (STU)	– Without environmental learning center – With environmental learning center (HS)
Service charge (CHA)	– 0 baht/person/time to visit the green area – 5 baht/person/time to visit the green area – 10 baht/person/time to visit the green area

Note: The bold attribute level is the base level

Figure 1 Example card alternative set

การวิเคราะห์ข้อมูล มีการใช้ข้อมูลปฐมภูมิจาก การสัมภาษณ์กลุ่มตัวอย่างและหน่วยงานผู้ดูแลหรือ จัดการพื้นที่สีเขียวในกรุงเทพมหานคร รวมถึงใช้ แบบสอบถามส่วนของข้อมูลเบื้องต้นเกี่ยวกับการใช้ ประโยชน์จากพื้นที่สีเขียว และวิเคราะห์อุปกรณ์ในรูปของ ค่าร้อยละ ความถี่ และศึกษาความพึงพอใจและความเต็ม ใจจากต่อคุณลักษณะของพื้นที่สีเขียวในกรุงเทพมหานคร ที่ประชาชนต้องการโดยใช้แบบจำลองทางเลือก (choice modelling) เป็นส่วนหนึ่งของแบบสอบถาม

$$V_i = \sum_{k=1}^K \beta_{ik} X_{ik} + \delta P_i \quad (1)$$

เมื่อแทนค่าตัวแปรแต่ละคุณลักษณะของพื้นที่สีเขียว จะได้ดังสมการที่ 2

$$V_i = \beta_0 \text{OPTOUT}_i + \beta_1 \text{SITE}_i + \beta_2 \text{TREE*SITE}_i + \beta_3 \text{SHRUB*SITE}_i + \beta_4 \text{PZ}_i + \beta_5 \text{HL}_i + \beta_6 \text{HS}_i + \delta \text{CHA}_i \quad (2)$$

ซึ่งการประมาณค่าความยินดีจ่ายเมื่อมีการ เปลี่ยนแปลงคุณภาพหรือปริมาณของสินค้า ใน แบบจำลองทางเลือก สามารถหาได้จากค่าอัตราส่วน ระหว่างสัมประสิทธิ์ของคุณลักษณะที่ต้องการหา (β_c) กับค่าสัมประสิทธิ์ของอุรรถประโยชน์ส่วนเพิ่มของเงิน

$$MWTP_c = -\frac{\beta_c}{\delta} \quad (3)$$

ผลการศึกษา

จากการศึกษาสภาพเศรษฐกิจและสังคมของ กลุ่มตัวอย่างผู้ใช้บริการพื้นที่สีเขียวในเขต กรุงเทพมหานคร พบร่วมกับกลุ่มตัวอย่างผู้ใช้บริการส่วน ใหญ่เป็นเพศหญิง อายุเฉลี่ย 32 ปี ระดับการศึกษาส่วน ใหญ่อยู่ระดับปริญญาตรี สถานะโสด มีอาชีพเป็นนิสิต/ นักศึกษา รายได้เฉลี่ยต่อเดือน น้อยกว่า 10,000 บาท จนถึง 20,000 บาท และมีจำนวนสมาชิกในครัวเรือน เฉลี่ย 4 คน ผลการศึกษาตามวัตถุประสงค์สามารถสรุป ได้ดังนี้

1. สถานภาพและการจัดการพื้นที่สีเขียว พฤติกรรมผู้ใช้บริการพื้นที่สีเขียว ส่วนใหญ่ เดินทางมาใช้บริการพื้นที่สีเขียวโดยรถสาธารณะ/รถ ประจำทาง ระยะทางจากที่พักอาศัยจนถึงพื้นที่สีเขียวที่ ใช้บริการประมาณ 5-10 กิโลเมตร ใช้ระยะเวลาในการ

การวิเคราะห์ข้อมูลในแบบจำลองทางเลือกใน ส่วนของการประเมินคุณลักษณะและความพึงพอใจของ ผู้ใช้บริการ ใช้แบบจำลอง mixed logit และใช้การ ประมาณค่าพารามิเตอร์ด้วยวิธี simulated maximum likelihood (Train, 2009) ใน การ วิเคราะห์ฟังก์ชันอุรรถประโยชน์ทางอ้อม (Vi) (Holmes and Adamowicz, 2003) ของผู้เข้ามาใช้บริการพื้นที่ สีเขียว แสดงดังสมการที่ 1

(8) ซึ่งค่าที่ได้จะเป็นค่าความยินดีจ่ายส่วนเพิ่ม (marginal willingness to pay: MWTP) หรือราคา แฝง (implicit price) ของคุณลักษณะนั้นๆ (Hanemann, 1984) ดังสมการที่ 3

เดินทาง 10 - 30 นาที มีค่าใช้จ่ายในการเข้ามาใช้บริการ พื้นที่สีเขียวต่อครั้ง 11 - 50 บาท มีเหตุผลที่เลือกใช้ บริการพื้นที่สีเขียวที่เข้าใช้บริการเนื่องจาก สภาพแวดล้อมดี กิจกรรมส่วนใหญ่ที่ชอบทำ คือ เดินเล่น ความถี่ในการมาใช้บริการพื้นที่สีเขียวเฉลี่ย 1 - 2 ครั้ง ต่อเดือน โดยใช้เวลาส่วนใหญ่ที่ผู้ใช้บริการมักเข้ามาใช้ บริการคือช่วง 16.01 - 18.00 น. และจะใช้เวลาอยู่ใน พื้นที่สีเขียวโดยเฉลี่ยประมาณ 1 - 2 ชั่วโมง ด้านความ ต้องให้มีการปลูกต้นไม้ ผู้ใช้บริการพื้นที่สีเขียวส่วนใหญ่ ต้องการให้ปลูกไม้ต้นเร็ว/ไม่ให้ร่มเงามากที่สุด และคิดว่า การปลูกจะช่วยในเรื่องของให้ร่มเงาในพื้นที่บริเวณ สถานที่พักผ่อนมากที่สุด เนื่องจากผู้ใช้บริการมีความ คิดเห็นว่าการที่ไม่ให้ใหญ่หรือไม่ยืนต้นจำนวนมากนั้น จะ ช่วยให้พื้นที่แห้งแล้ง มีความร่มเย็น ร่มรื่นมากขึ้น หมาย แก่การมาพักผ่อนหย่อนใจ และความมีการจัดสัดส่วนพื้นที่ ให้เหมาะสมแก่การเข้ามาทำกิจกรรมและพักผ่อน

2. ศึกษาความพึงพอใจและความเต็มใจจ่าย ต่อคุณลักษณะของพื้นที่สีเขียวในกรุงเทพมหานคร ที่ประชาชนต้องการ

การวิเคราะห์พัฒนาชั้นอรรถประโยชน์ทางอ้อม ของกลุ่มตัวอย่างผู้ใช้บริการพื้นที่สีเขียวในกรุงเทพมหานคร (ตารางที่ 2) พบว่า ตัวแปรส่วนใหญ่มีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่นร้อยละ 99 คือ การเพิ่มโชนพิเศษ (PZ) การติดป้ายชื่อต้นไม้ (HL) การมีแหล่งเรียนรู้ด้านสิ่งแวดล้อม (HS) ค่าเข้าใช้บริการ (CHA) และทางเลือกที่ผู้ใช้บริการเลือกรณไม่ชอบทางเลือกที่นำเสนอ (Optout) ยกเว้นคุณลักษณะพื้นที่ไม่มียืนต้น (TREE*SITE) มีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่นร้อยละ 95 และมีเพียงคุณลักษณะ ขนาดพื้นที่ (SITE) และพื้นที่ไม่ต้นเล็กหรือไม่พุ่ม (SHRUB*SITE) ที่ไม่มีนัยสำคัญทางสถิติ สามารถ

อธิบายได้ว่า ระดับคุณลักษณะ การเพิ่มโชนพิเศษ (PZ) มีการติดป้ายชื่อต้นไม้ (HL) การมีแหล่งเรียนรู้ด้านสิ่งแวดล้อม (HS) และพื้นที่ไม่มียืนต้นเพิ่มขึ้นต่อไร่ (TREE*SITE) ทำให้ผู้ใช้บริการพื้นที่สีเขียวได้รับอรรถประโยชน์เพิ่มขึ้น โดยผู้ใช้บริการพื้นที่สีเขียวจะได้รับอรรถประโยชน์ในพื้นที่สีเขียวที่มีการติดป้ายชื่อต้นไม้มากที่สุด ส่วนคุณลักษณะ ขนาดพื้นที่ (SITE) และระดับคุณลักษณะพื้นที่ไม่ต้นเล็กหรือไม่พุ่ม (SHRUB*SITE) ไม่มีนัยสำคัญทางสถิติ หมายความว่า ไม่มีผลต่อการได้รับอรรถประโยชน์ของกลุ่มตัวอย่าง ผู้ใช้บริการ สำหรับคุณลักษณะค่าเข้าใช้บริการพื้นที่สีเขียว (CHA) กลุ่มตัวอย่างผู้ใช้บริการได้รับอรรถประโยชน์ลดลงเมื่อค่าเข้าใช้บริการพื้นที่สีเขียวเพิ่มมากขึ้น ซึ่งสอดคล้องกับทฤษฎีอุปสงค์

Table 2. Results of the choice model for the green area preference of urban users in Bangkok, 2017

Attribute	Coefficient	z
Selected alternatives (Optout _i)	-1.685313***	-5.39
Site of green area (SITE _i)	-0.0221216 ^{ns}	-1.11
Shaded tree area (TREE*SITE _i)	0.0628447**	2.38
Shrub area (SHRUB*SITE _i)	-0.010024 ^{ns}	-0.48
With special zone (PZ _i)	0.8856395***	6.34
With tree-label (HL _i)	1.247999***	8.33
With Environmental learning center (HS _i)	0.7258552***	5.41
Service charge (CHA _i)	-0.0970997***	-5.18
Log likelihood	-1021.0085	
LR chi2 (8)	146.75	
Prob>chi2	0.0000	

Note: *** indicating the coefficients of the variables were statistically significant at the confidence level of 99 percent

** indicating the coefficients of the variables were statistically significant at the confidence level of 95 percent

^{ns} indicating the coefficients of the variables were not statistically significant

ค่าสัมประสิทธิ์ของตัวแปรต่าง ๆ จากสมการ พัฒนาชั้นอรรถประโยชน์ทางอ้อม (Vi) สามารถนำมาหา

มูลค่าคุณลักษณะระดับใดระดับหนึ่ง ซึ่งก็คือ ค่าความเต็มใจจ่ายส่วนเพิ่ม หรือราคาแพง ของระดับคุณลักษณะ

นั้น ๆ ได้ โดยราคาแพงของการมีป้ายชื่อต้นไม้เท่ากับ 12.85 บาท/คน/ครั้ง การเพิ่มโชนพิเศษ เท่ากับ 9.12 บาท/คน/ครั้ง การมีแหล่งเรียนรู้ด้านสิ่งแวดล้อมเท่ากับ 7.48 บาท/คน/ครั้ง และการมีพื้นที่ต้นไม้เพิ่มขึ้นต่อไร่ เท่ากับ 0.65 บาท/ไร่ (ตารางที่ 3)

$$MWTP_c = (12.85 - 0) + (9.12 - 0) + (7.48 - 0) = 29.45 \text{ บาท/คน/ครั้ง ของการเข้าใช้บริการพื้นที่สีเขียว}$$

ดังนั้น ผู้ใช้บริการมีความเต็มใจจะจ่ายเพิ่มขึ้น เท่ากับ 29.45 บาทต่อคนต่อครั้งของการเข้าใช้บริการ พื้นที่สีเขียว สำหรับการปรับปรุงดังกล่าว และหาก

กรณีการเปลี่ยนแปลงulatoryคุณลักษณะและ ห�력ระดับ เดิมพื้นที่สีเขียวส่วนใหญ่ ไม่มีการติดป้ายชื่อ ต้นไม้ ไม่มีแหล่งเรียนรู้ด้านสิ่งแวดล้อม และไม่มีการเพิ่ม โชนพิเศษ โดยผู้ใช้ส่วนสาธารณะต้องการปรับปรุงพื้นที่สี เขียวให้เป็น มีการติดป้ายชื่อต้นไม้ มีแหล่งเรียนรู้ด้าน สิ่งแวดล้อม และมีการเพิ่มโชนพิเศษ

ต้องการให้มีการเพิ่มพื้นที่ของไม้ยืนต้นเพิ่มขึ้น เช่น หาก มีการเพิ่มการปลูกไม้ยืนต้นเพิ่มขึ้น 10 ไร่ ผู้ใช้บริการจะ มีความเต็มใจจ่ายเพิ่มขึ้น 6.50 บาท

Table 3. Willingness to pay for the green area attributes in Bangkok, 2017

attribute	Levels of attribute	WTP
1. Tree-label (LAB)	- With tree-label (HL)	12.85 baht/person/time
2. Special zone (ZONE)	- With special zone (PZ)	9.12 baht/person/time
3. Environmental learning center (STU)	- With Environmental learning center (HS)	7.48 baht/person/time
4. Area of shaded Trees	- more shaded trees area (TREE*SITE)	0.65 Baht/Rai

นอกจากผลการศึกษาในด้านพื้นที่สีเขียว ยังมี ข้อคิดเห็นเพิ่มเติมที่ผู้ใช้บริการเห็นว่าพื้นที่สีเขียว ควรมี การปรับปรุงในเรื่องของความสะอาดภายในพื้นที่ การ ปรับปรุงสาธารณูปโภค ที่จอดรถไม่เพียงพอ พื้นถนน ทางเดินชุ่มชื้น ที่นั่งไม่เพียงพอ ความสุภาพของผู้ดูแล สวน การรักษาภาระเบียบอย่างเคร่งครัด ควรมีการเพิ่ม ร้านเข้าอุปกรณ์สำหรับออกกำลังกายหรืออุปกรณ์ปิกนิก รวมถึงตู้เช่าเก้าอี้บริการเป้าเพื่อความสะดวก

วิจารณ์

คุณลักษณะพื้นที่สีเขียวที่ได้จากการสัมภาษณ์ ได้แก่ ขนาดพื้นที่ สัดส่วนไม้ยืนต้นต่อไม้ต้นเล็กหรือไม้ พุ่มต่อพื้นที่สำหรับน้ำหน้าการหรือสิ่งก่อสร้าง โชนพิเศษ ป้ายชื่อต้นไม้ แหล่งเรียนรู้ด้านสิ่งแวดล้อม และค่าเข้าใช้ บริการ ซึ่งส่วนหนึ่งของคุณลักษณะทั้งหมดสอดคล้องกับ งานวิจัยของ De la Barrera et al. (2016) ที่พบว่า ตัวชี้วัดในการพิจารณาพื้นที่สีเขียวคือเรื่องของคุณภาพ

พื้นที่สีเขียวที่ขึ้นอยู่กับขนาด รูปร่าง และพืชพันธุ์ปัก คุณลักษณะพื้นที่สีเขียวที่มีผลต่อความพึงพอใจ ของผู้ใช้บริการ โดยผู้ใช้บริการมีความพึงพอใจต่อการ เพิ่มพื้นที่สีเขียวที่ไม้ยืนต้นมากกว่าไม้ต้นเล็กหรือไม้พุ่ม แต่เรื่องของขนาดพื้นที่สีเขียวนั้นไม่มีผลต่อความพึง พึงพอใจของผู้ใช้บริการ อาจเป็นเพราะระดับของ คุณลักษณะขนาดพื้นที่สีเขียวนั้นไม่ต่างกันมากนัก จึงทำ ให้ไม่มีผลต่อความพึงพอใจของผู้ใช้บริการ รวมถึงเรื่อง ของความต้องการให้พื้นที่ไม้ยืนต้นเพิ่มขึ้น สอดคล้องกับ งานของ Jennings et al. (2016) ที่พบว่า ในอนาคต กลุ่มตัวอย่างต้องการให้มีการปลูกต้นไม้มากขึ้น รวมถึง ความพยายามในการปลูกต้นไม้ในสวนสาธารณะของ เมือง เพื่อเพิ่มความอุดมสมบูรณ์ของพื้นที่และความ หนาแน่นของจำนวนต้นไม้ ซึ่งข้อค้นพบที่สอดคล้องกัน เหล่านี้ จะเป็นประโยชน์สำหรับนักวางแผนเมืองและนัก ออกแบบภูมิทัศน์เพื่อให้เข้าใจถึงความต้องการของ

ประชาชนในการจัดการต้นไม้และรวบรวมข้อมูลดังกล่าว ในการออกแบบสวนสาธารณะใหม่และเพิ่มมูลค่าให้กับ สวนสาธารณะที่มีอยู่

ในเรื่องของความเต็มใจจ่ายของผู้ใช้บริการ พบว่าผู้ใช้บริการมีความยินดีจ่ายเพื่อการปรับปรุงหรือ เปลี่ยนแปลงให้พื้นที่สีเขียวมีการติดป้ายชื่อต้นไม้ เพิ่ม โฉนดพิเศษ และมีแหล่งเรียนรู้ด้านสิ่งแวดล้อม โดยมีความ เต็มใจจ่ายเท่ากับ 29.45 บาท/คน/ครั้ง รวมถึงความเต็ม ใจจ่ายในส่วนของการเพิ่มพื้นที่ไม้ยืนต้นอยู่ที่ 0.65 บาท/ ไร่ ซึ่งหน่วยงานที่รับผิดชอบสามารถนำไปคำนวณเป็นค่า เข้าใช้บริการพื้นที่สีเขียว เช่นเดียวกับงานวิจัยของ Song *et al.* (2014) ที่พบว่า 81.4% ของผู้ตอบ แบบสอบถามยินดีที่จะจ่ายเงินเพื่อการอนุรักษ์พื้นที่สี เขียวในเมือง โดยมีค่าความยินดีจ่ายสูงกว่าค่าเข้าใช้ บริการจริง ซึ่งผลลัพธ์เหล่านี้สามารถช่วยในการวางแผน และอนุรักษ์พื้นที่สีเขียวในเมืองต่อไปได้

ในส่วนของคุณลักษณะการติดป้ายชื่อต้นไม้ การมีแหล่งเรียนรู้ด้านสิ่งแวดล้อม และการเพิ่มโฉนดพิเศษ ถือเป็นคุณลักษณะที่ก่อผลตัวอย่างที่ใช้บริการพื้นที่สีเขียว ในกรุงเทพมหานคร ต้องการให้พื้นที่สีเขียวพัฒนาเป็น แหล่งเรียนรู้ที่ประชาชนสามารถเข้ามาพักผ่อนและทำ กิจกรรมควบคู่กับการเรียนรู้ไปด้วย สอดคล้องกับงาน ของ สำนักงานเลขานุการ สภา การศึกษา กระทรวงศึกษาธิการ (2548) ที่มีข้อเสนอแนะว่าพื้นที่สี เขียว ควรจัดแหล่งการเรียนรู้ตลอดชีวิต ผ่านการ สนับสนุนด้านวิชาการโดยการตั้งหน่วยงาน เพื่อ รับผิดชอบด้านการจัดการศึกษาแก่ประชาชน เพื่อ สนับสนุนการจัดการศึกษาให้เป็นแหล่งการเรียนรู้ตลอด ชีวิตที่มีประสิทธิภาพในอนาคต รวมทั้งต้องได้รับการ พัฒนาให้เป็นแหล่งการเรียนรู้ในชุมชน และสนับสนุน การศึกษาตลอดชีวิต โดยพัฒนาให้เป็นเครือข่ายแหล่ง การเรียนรู้ตลอดชีวิต

สรุป

พื้นที่สีเขียว ถือเป็นตัวชี้วัดหนึ่งที่สามารถ บ่งบอกถึงคุณภาพชีวิตคนในเมืองได้ จากการศึกษา พบว่า การเปลี่ยนแปลงของระดับคุณลักษณะฐาน จาก เดิม พื้นที่สีเขียวประเภทสวนสาธารณะส่วนใหญ่ ไม่มี

การติดป้ายชื่อต้นไม้ ไม่มีแหล่งเรียนรู้ด้านสิ่งแวดล้อม ไม่มีการเพิ่มโฉนดพิเศษ และไม่มีการเก็บค่าบริการในการเข้า ไปใช้บริการพื้นที่สีเขียว เปลี่ยนเป็นระดับคุณลักษณะที่มี การติดป้ายชื่อต้นไม้ มีแหล่งเรียนรู้ด้านสิ่งแวดล้อม มี การเพิ่มโฉนดพิเศษ ซึ่งทำให้ผู้ใช้บริการพื้นที่สีเขียวมีความ พึงพอใจและได้รับผลกระทบประโยชน์เพิ่มขึ้น โดยเฉพาะ อย่างยิ่ง เรื่องของการติดป้ายชื่อต้นไม้ พร้อมอธิบาย สรรคุณ เป็นระดับคุณลักษณะที่ผู้ใช้บริการมีความยินดี จ่ายสูงที่สุด โดยการเปลี่ยนแปลงเพื่อคุณลักษณะ ดังกล่าว ผู้ใช้บริการมีความยินดีจ่ายเท่ากับ 29.45 บาท/ คน/ครั้งของการเข้าใช้บริการพื้นที่สีเขียว และการมีพื้นที่ ไม้ยืนต้นเพิ่มขึ้น ทำให้ผู้ใช้บริการพื้นที่สีเขียวมีความพึง พဝใจและได้รับผลกระทบประโยชน์เพิ่มขึ้นเช่นกัน โดย ผู้ใช้บริการมีความยินดีจ่ายสำหรับการเพิ่มพื้นที่ไม้ยืนต้น 10 ไร่ เท่ากับ 6.50 บาท

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณ ศูนย์วิจัยเศรษฐศาสตร์ ประยุกต์ และโครงการบัณฑิตศึกษา ภาคพิเศษ ประจำ ภาควิชาเศรษฐศาสตร์เกษตรและทรัพยากร ที่ได้ สนับสนุนทุนการวิจัยในครั้งนี้ รวมถึงสำนัก สวนสาธารณะ สำนักสิ่งแวดล้อม และสำนักงานนโยบาย และแผนพัฒนาทรัพยากรรرمชาติและสิ่งแวดล้อมที่ได้ อนุเคราะห์ข้อมูลประกอบการศึกษาครั้งนี้

เอกสารอ้างอิง

ฉัตรชัย เงินแสงราย. 2557. เพิ่มพื้นที่สีเขียวเมืองกรุง ทำอย่างไรกีไม่พอ. (ระบบออนไลน์). แหล่งข้อมูล: <http://www.sci.ku.ac.th:8000/sckuforlife/images/doc/05/05.pdf> (30 กันยายน 2559).

นิคม บุญญาสุทธิ์ และ Kung Shiann-Far. 2557. บทบาทของโครงสร้างพื้นฐานเขียวในการ ปรับตัวของห้องถินไทย เพื่อการตั้งรับภัยพิบัติ จากภัยมิอากาศเปลี่ยนแปลง. วารสาร มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา 7(2): 132-143.

ปุณยนุช รุชิรโก. 2556. ความยั่งยืนในการจัดการพื้นที่สีเขียวในเขตเมือง. วารสารสุทธิบุรีทัศน์ 27(84): 55-76.

รัตน์ชา ชัยนัด และ ศุภลักษณ์ สุวรรณะชฎ. 2559. สภาพปัจจุบันและความต้องการการพัฒนาคุณภาพชีวิตผู้ด้อยโอกาสตามโครงการอนุรักษ์อนุรักษ์ท้องถิ่น. วารสารการบริหารท้องถิ่น 9(5): 80-90.

วิสาขा ภูจันดา และดวงรัชนี เต็งสกุล. 2559. การประเมินเบื้องต้นของผลกระทบทางสิ่งแวดล้อมในการจัดการทรัพยากรชุมชนตามหลักนิเวศวิทยาอุตสาหกรรม: กรณีศึกษาชุมชนบ้านโคกไม้เงาม ตำบลศรีสุข อำเภอสีชมพู จังหวัดขอนแก่น. วารสารการพัฒนาชุมชนและคุณภาพชีวิต 4(3): 313-325.

สำนักงานเลขานุการสภาพการศึกษา. 2548. การจัดการเรียนรู้ของแหล่งการเรียนรู้ตลอดชีวิต: สวนสาธารณะ. รายงานการวิจัย. กระทรวงศึกษาธิการ, กรุงเทพฯ. 208 หน้า.

สำนักสิ่งแวดล้อม กรุงเทพมหานคร. 2560. ฐานข้อมูลและระบบติดตามการเพิ่มพื้นที่สีเขียวประเภทสวนสาธารณะ และสวนหย่อมในกรุงเทพฯ. (ระบบออนไลน์). แหล่งข้อมูล: http://203.155.220.118/green-parks-admin//reports/chartby/gardentype_parks7.php (3 เมษายน 2560).

อุบลรัตน์ หมายใส่ และ จิราภรณ์ ตั้งกิตติภักรณ์. 2557. แนวทางการพัฒนาพื้นที่สีเขียวอย่างยั่งยืนในเขตเทศบาลครเชียงใหม่. วารสารการพัฒนาชุมชนและคุณภาพชีวิต 2(3): 233-244.

De la Barrera, F., S. Reyes-Paeckeb and E. Banzhaf. 2016. Indicators for green

spaces in contrasting urban settings. Ecological Indicators 62: 212-219.

Hanemann, W. M. 1984. Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics 66: 332-341.

Holmes, T. P. and W. L. Adamowicz. 2003. Attribute-based methods. pp. 171-219. In: P.A. Champ, K. J. Boyle, T. C. Brown, (eds.). A Primer on Nonmarket Valuation. Kluwer Academic Publishers, Dordrecht.

Jennings, T. E., S. R. Jean-Philippe, A. Willcox, J. M. Zobel, N. C. Poudyal and T. Simpson. 2016. The influence of attitudes and perception of tree benefits on park management priorities. Landscape and Urban Planning 153: 122-128.

Rose, J. M. and M. C. J. Bliemer. 2013. Sample size requirements for stated choice experiments. Transportation 40: 1021-1041.

Xiuhua Song, Xinbo Lv and Chuanrong Li. 2014. Willingness and motivation of residents to pay for conservation of urban green spaces in Jinan, China. Acta Ecologica Sinica 35: 89-94.

Train, K. E. 2009. Discrete Choice Methods with Simulation. 2nd ed. Cambridge University Press, Cambridge. 388 p.

Willingness to Pay for Green Areas Attributes of Users in Bangkok

***Bussagorn Kontong¹*, Suwanna Praneetvataku²
and Narong Veeravaitaya³***

¹Resource Management Program, Faculty of Economics,
Kasetsart University, Chatuchak, Bangkok 10900

²Department of Agricultural and Resource Economics, Faculty of Economics,
Kasetsart University, Chatuchak, Bangkok 10900

³Department of Fisheries Biology, Faculty of Fisheries,
Kasetsart University, Chatuchak, Bangkok, 10900

*Corresponding author E-mail: Apollo-nm@hotmail.com

(Received: 23 June 2017; Accepted 19 October 2017)

Abstract: Green area is an important factor determining the quality of life of urban people. This research aims to analyze the satisfaction and willingness to pay of urban users for the attributes of green areas in Bangkok. Primary data were collected using questionnaires in interviews with green area users, consisting of 300 samples. Data were analyzed by choice modelling technique. The results showed that most of the users wanted more fast-growth trees. The users focused on green areas with tree-labeling, special zones and environmental learning centers. After improving the above attributes, it was found that they were willing to pay 29.45 baht/person/time to visit the green area. In addition, when increasing shade trees, they were more satisfied and were willing to pay 6.5 baht for a 4-acre increase in the area of shade trees. Therefore, relevant government agencies, the Park bureau and the Environment bureau should consider planting more fast-growing trees to provide a larger green area. Moreover, increasing the area of shade trees, putting up tree-labels with a description of their attributes, enhancing the environmental learning center and special zones, such as an herbal zone, are suggested for the improvement of quality of life for urban people in Bangkok.

Keywords: Green areas, choice model, willingness to pay, Bangkok

บทคัดย่อ: พื้นที่สีเขียว ถือเป็นตัวชี้วัดหนึ่ง ที่สามารถบ่งบอกถึงคุณภาพชีวิตคนในเมืองได้ การวิจัยครั้งนี้มีวัตถุประสงค์หลัก เพื่อ ประเมินความพึงพอใจและความเต็มใจจ่ายของผู้ใช้บริการที่มีต่อคุณลักษณะของพื้นที่สีเขียวในกรุงเทพมหานคร การวิจัยนี้ได้ ทำการรวบรวมข้อมูลปัจจุบันโดยใช้แบบสอบถามสัมภาษณ์กลุ่มตัวอย่างผู้ใช้บริการพื้นที่สีเขียวในกรุงเทพมหานคร จำนวน 300 ตัวอย่าง ใช้เทคนิคแบบจำลองทางเลือก ซึ่งผลการศึกษา พบว่า กลุ่มตัวอย่างผู้ใช้บริการส่วนใหญ่ต้องการให้มีการปลูกไม้ต้นเร็วมาก ที่สุด และกลุ่มตัวอย่างจะให้ความสำคัญกับพื้นที่สีเขียวที่มีการติดป้ายชื่อต้นไม้ มีการเพิ่มโขนพิเศษ และมีแหล่งเรียนรู้ด้าน สิ่งแวดล้อม โดยการเปลี่ยนแปลงเป็นคุณลักษณะดังกล่าว พบว่าผู้ใช้บริการมีความยินดีจ่าย 29.45 บาท/คน/ครั้ง ของการเข้าใช้ บริการพื้นที่สีเขียว และการมีพื้นที่ไม่ยืนต้นเพิ่มขึ้น จะทำให้ผู้ใช้บริการมีความยินดีจ่ายเท่ากับ 6.50 บาทต่อการเพิ่มพื้นที่ไม่ยืน

ต้น 10 ไร่ ดังนั้นภาครัฐ และสำนักงานสาธารณสุข ควรพิจารณาเพิ่มพื้นที่ไม้ยืนต้น ติดป้ายชื่อต้นไม้ เพิ่มแหล่งเรียนรู้ด้านสิ่งแวดล้อม และเพิ่มโฉนดพิเศษ เพื่อให้สอดคล้องกับคุณลักษณะที่ผู้ใช้บริการต้องการ ซึ่งจะเป็นการเพิ่มคุณภาพชีวิตที่ดีให้แก่ผู้ใช้บริการพื้นที่สีเขียวในกรุงเทพมหานครต่อไป

คำสำคัญ: พื้นที่สีเขียว แบบจำลองทางเดือก ความเต็มใจจ่าย กรุงเทพมหานคร

Introduction

Bangkok, the capital of Thailand, can be considered the center of all forms of progress. This progress is like a two-edged sword, which has both good and bad sides. When there is progress, there must also be deterioration. Natural resources are constantly deteriorating, because humans use many natural resources to meet the needs of production, industry and other activities (Phoochinda and Tengsakul, 2016). There are many works of research that indicate that green areas are important for the health of urban people, because these public spaces have benefits for both the mental and physical health conditions of community members. Green urban spaces provide urban dwellers with alternatives for rest, relaxation and exercise in free time (Boonyanusith and Shiann-Far, 2014).

The green spaces of Bangkok comprise an area of 3.3 square meters per person. The green spaces that exist are covered by trees that are planted and managed, not all are large trees that are utilized or serve as the lungs of the city, which have different processes in their ecological function. Green spaces should have large trees as their main element, because large upright trees can enhance environmental value better than smaller trees and shrubs (Ngernsaengsaruay, 2014). Moreover, green spaces classified as public parks often lack public relations and upkeep, indicating both

environment and management issues (Yasai and Tangkittipaporn, 2014). The result is that the attributes of some green areas are not as effective as they should be. Green space is therefore an important aspect of management that aims to achieve tree cover that is appropriate for urban areas. Policies should be established to provide quality of life to the people, with public parks that, and support the participation of people in the development planning of their communities (Chainad and Suvarnajata, 2016). Thus, efforts to manage green spaces are important as they have positive impact on the urban environment, creating a sustainable atmosphere that is cool and livable and promoting the health of urban dwellers (Ruthirako, 2016).

The issues discussed above show how green spaces are important to the lives of urban dwellers. However, for a variety of reasons, increasing the area of green spaces is not an easy matter, even though there is much potential for the development and improvement of green spaces to bring them more into line with the demands of the people. Therefore, it is important to conduct research into the attributes of green spaces that are in demand from the perspective of the people. This will also help answer important questions about how the limited green spaces that exist can provide the most benefit and be effective for communities. The current research is a study in the attributes

of green spaces, and peoples' satisfaction and willingness to pay for green spaces. It is hoped that the findings will be of use to decision makers in relevant agencies, providing information in the consideration of how green spaces can be more appropriate and responsive to the needs of society in the future. The objective of this research is to assess the current situation and management of green spaces in Bangkok, as well as analyze peoples' satisfaction and willingness to pay in relation to the attributes of green spaces in Bangkok metropolitan area.

Materials and Methods

Data collection

The data used in this research can be divided into two types: secondary data that was obtained from documents and reports from a number of relevant agencies, as well as technical reports and academic theses researching green spaces; primary data concerning the types and level of attributes of green spaces, collected through interviews with the sample group, including both consumers of services in green spaces and officials involved in their management in Bangkok. Questionnaires were also used in fieldwork, which was conducted over a period of October 2016 to June 2017.

1. Sample group and size of sample: Interview questionnaires were used with groups of green space users living in Bangkok. Three hundred questionnaires were administered, which is the lowest acceptable number for the

choice modelling technique applied (Rose and Bliemer, 2013). The process used is as follows:

Step One: Selection of Green Space Type

This research was concerned with public parks, and selected the main public parks of Bangkok. The thirty main public parks of Bangkok were then divided into seven types, consisting of small parks, village parks, community parks, regional parks, district parks, specific street parks and road-side parks (The Bangkok Metropolitan Administration, 2017).

Step Two: Select Spaces

The research selected community and village parks because they are the most numerous among the main public parks of Bangkok and have areas that are close to each other. Also, they were chosen because they are the green spaces that have the largest number of users. Samples from six village parks and six community parks were chosen with quota sampling, with the total sample divided into equal groups of 25 samples.

2. Tools used in the research: The research used questionnaires that were created from data collected from secondary sources and from data collected, consisting of information on behavior in green space use, choice modeling and socio-economic data of the respondents.

The creation of the questionnaire for choice modeling began with identification of the type of attribute and level of attribute of green spaces. This was derived from checking of preliminary research documents and interviews with experts in the field. The attributes were obtained from the information and

recommendations of the Office of Public Parks regarding the needs of the public in the following five years, and are common to all public parks (Table 1).

For each attribute, the level at the site was 5.93, 9.88 and 19.77 Acre. The ratio of large trees to shrub per area for recreation or buildings was 20:70:10: 50:20:30 and 60:30:10. The zone attributes had an attribute level of with or without special zoning. The tree identification label (LAB) attribute had an attribute level of with or without. The environmental learning center (STU) attribute had an attribute level of with or without. The service charge attribute had an attribute level of 0, 5 or 10 baht per person per time to visit.

Next, the alternatives were identified. If it was necessary to analyze the variable as affecting the level of satisfaction, the entire variable was combined. In this research, a total of sixteen alternatives were identified with choice set so that they could be used in the interviews. Each alternative consisted of three options, with the first two options coming from orthogonal factorial design and the third option coming from Opt-Out selection for users that were not satisfied with the first two options (Figure 1). From the 16 options, 8 alternatives could be constructed. From all 8 alternatives, two forms for the interview answers were created, A and B. For each group, 150 of each form were used.

Table 1. The different attributes and levels of the green area, defined in the choice set of questionnaires.

Attribute	Levels of attribute
Site of green area (SITE)	– 5.93 Acre
	– 19.77 Acre
Shaded tree (TREE): shrub (SHRUB): recreation area or building	– 20: 70: 10
	– 50: 20: 30
	– 60: 30: 10
Special zone (ZONE) (i.e. Herbal zone and Rare Species zone)	– Without special zone
	– With special zone (PZ)
Tree-label (LAB)	– Without tree-label
Description of the plant characteristics	– With tree-label (HL)
Environmental learning center (STU)	– Without environmental learning center
	– With environmental learning center (HS)
Service charge (CHA)	– 0 baht/person/time to visit the green area
	– 5 baht/person/time to visit the green area
	– 10 baht/person/time to visit the green area

Note: The bold attribute level is the base level

Figure 1 Example card alternative set

3. Data analysis: Primary data from interviews with users and official was used in the analysis, including the preliminary data questionnaire about use of green spaces, which generated percentage and frequency. Moreover, satisfaction and willingness to pay for green spaces in Bangkok were analyzed using choice modelling as part of the questionnaire.

The analysis of choice modelling data in evaluating the attribute and satisfaction of users used mixed logit, and estimated the parameter value with simulated maximum likelihood (Train, 2009) in function and indirect advantage analysis (V_i) (Holmes and Adamowicz, 2003) of green space users, calculated with Formula 1.

$$V_i = \sum_{k=1}^K \beta_{ik} X_{ik} + \delta P_i \quad (1)$$

$$V_i = \beta_0 \text{OPTOUT}_i + \beta_1 \text{SITE}_i + \beta_2 \text{TREE} * \text{SITE}_i + \beta_3 \text{SHRUB} * \text{SITE}_i + \beta_4 \text{PZ}_i + \beta_5 \text{HL}_i + \beta_6 \text{HS}_i + \delta \text{CHA}_i \quad (2)$$

Estimation of willingness to pay when there is a change in quality or quantity of product was conducted with choice modelling. This can be found from the ratio of the coefficient value of the target attribute (β_c) and the coefficient of

the (δ). The value obtained was the marginal willingness to pay (MWTP) or implicit price of the attribute (Hanemann, 1984), as indicated in Formula 3.

$$MWTP_c = -\frac{\beta_c}{\delta} \quad (3)$$

Results

The research on the socio-economic situation of the users of green space in Bangkok found that most were female, with average age of 32, average level of education at bachelor's degree, single, were students and had an average monthly income ranging from less than 306 \$ to 611 \$. The average number of household members for the sample was four. The results for the research objectives are summarized below.

1. Situation and management of green spaces

With regards to the behavior of green space users in Bangkok, most travel to public parks using public transit. The distance from residence to green space is approximately 5-10 km, with a travel time of 10-30 minutes. Entrance fees for green spaces are 11-50 baht per visit. The reason for choosing to use green spaces was the health benefits, and the most popular activity is walking. The frequency of visits averaged at 1-2 times per month, and the most popular time for visits is 4:00-6:00 pm. The average usage time per visit was 1-2 hours. Most green space users preferred that slow-growing and shade-giving trees were planted. Most believed that tree planting would be best to increase shady area for rest and relaxation. Most people were of the opinion that large trees would help these areas by making them cooler and more comfortable, which is important as they visit the parks in order to rest and relax. They also believed that the areas should be improved so that they are in line with the rest

and relaxation activities that users desire when they visit parks.

2. Satisfaction and willingness to pay by desired attribute of green space in Bangkok

Analysis of indirect advantage function of the green space user sample group (Table 2) found that most of the variables were statistically significant at 99% level of confidence, including increasing special zones (PZ), providing tree labels (HL), presence of environmental learning centers (HS), and service charges (CHA). The alternative in which the user did not prefer the option (Opt-Out), aside from the large tree attribute (TREE*SITE), had statistical significance at a 95% level of confidence. Only the size of area (SITE) attribute and the presence of shrubs (SHRUB*SITE) attribute were not statistically significant. This can be explained by the attribute level of special zones (PZ), tree labels (HL), environmental learning center (HS) and increased shade trees per acre (TREE*SITE), which increased the advantage for the users. The tree label attribute provided the most advantage for users of green spaces. The lack of statistical significance for the size of site (SITE) and presence of shrubs (SHRUB*SITE) attributes means that they do not affect advantage of the user sample group. Users of green space obtained lower advantage when the service charge increased, indicating the relationship of the service charge (CHA) attribute in the analysis. which is in line with demand theory.

Table 2. Results of the choice model for the green area preference of urban users in Bangkok, 2017

Attribute	Coefficient	z
Selected alternatives (Optout _i)	-1.685313***	-5.39
Site of green area (SITE _i)	-0.0221216 ^{ns}	-1.11
Shaded tree area (TREE*SITE _i)	0.0628447**	2.38
Shrub area (SHRUB*SITE _i)	-0.010024 ^{ns}	-0.48
With special zone (PZ _i)	0.8856395***	6.34
With tree-label (HL _i)	1.247999***	8.33
With Environmental learning center (HS _i)	0.7258552***	5.41
Service charge (CHA _i)	-0.0970997***	-5.18
Log likelihood	-1021.0085	
LR chi2 (8)	146.75	
Prob>chi2	0.0000	

Note: * indicating the coefficients of the variables were statistically significant at the confidence level of 99 percent

** indicating the coefficients of the variables were statistically significant at the confidence level of 95 percent

*ns indicating the coefficients of the variables were not statistically significant

Coefficient values from the indirect advantage function formula for the various variables can be used to find the attribute value at a certain level. That is, the willingness to pay or the implicit price of that attribute level. The implicit price of the tree label attribute was 0.39

\$ per person per time, while the increased special zone attribute was 9.12 baht per person per time, the environment learning center attribute was 0.23 \$ per person per time and the increased shade tree per acre attribute was 0.02 \$ per 0.40 acre (Table 3).

Table 3. Willingness to pay for the green area attributes in Bangkok, 2017

attribute	Levels of attribute	WTP
1. Tree-label (LAB)	- With tree-label (HL)	12.85 baht/person/time
2. Special zone (ZONE)	- With special zone (PZ)	9.12 baht/person/time
3. Environmental learning center (STU)	- With Environmental learning center (HS)	7.48 baht/person/time
4. Area of shaded Trees	- more shaded trees area (TREE*SITE)	0.65/0.39 Baht/Acre

The variation observed in many attributes and levels is because greenest spaces typically do not have tree labels, environment learning centers or increased special zones.

Thus, users prefer to have improvements made to green zones, in terms of tree labels, environmental learning centers and increased special zones.

The marginal willing to pay of users is 29.45 baht per person per visit to a green space for the improvements mentioned. If there is a desire for increase in shade trees, for example a 3.95 acre increase in shade tree area, users are willing to pay 6.50 additional baht.

In addition to the findings regarding the area of green spaces, users had other opinions about how green spaces could be improved. For example, cleanliness in the green space, availability of public utilities, sufficient parking, walking surfaces, sufficient sitting areas, attitude of staff, enforcement of rules, exercise and picnic equipment rental facilities, as well as rental lockers for bags, could all be areas of improvement to increase utility for users.

Discussion

The attributes of green spaces identified in the interviews included sized of area, ratio of shade trees to small trees or shrubs on recreation or building area, special zones, tree labels, environment learning centers and service charges. Some of these attributes are in line with the research of De la Barrera et al. (2016), which found that indicators in the consideration of the quality of green spaces depend on size, appearance and vegetation cover. This research found that the type and ratio of vegetation cover affect the satisfaction of users, as users are more satisfied with increasing large, shade trees rather than small trees or shrubs. This may be because the level of attribute for area was not significantly different and did not affect users' preferences. The desire for increased large trees follows the findings of Jennings et al. (2016),

who found that in the future, sample groups will want larger trees planted, as well as efforts to plant trees in district public parks to enhance species richness and tree density. These points agree with each other, as they are useful information for planners at the district level, as well as landscape designers, because they offer clear ideas of what the public wants in terms of tree management. The information should be useful in the design of new public parks, and increase the value of existing parks.

With regards to willingness to pay of users, it was found that they were willing to pay for improvements or changes that would involve tree labels, increase special zones and construct environmental learning centers. The willingness to pay was quantified at 0.90 \$ per person per time. Moreover, willingness to pay for increase of area under large trees was 0.02 \$ per 0.40 acre. Officials could use this estimate as a basis for calculating green space service or entrance charges. This is supported by the research of Song et al. (2014), who found that 81.4% of people surveyed answered that they would be willing to pay for conservation of green urban spaces, at levels of willingness to pay that were higher than the current service fees. These results can assist planning and conservation of green spaces in urban areas.

Users of Bangkok green space users would like to see their green areas developed into places where people can both learn and relax at the same time, through the attributes of tree labels, environmental learning centers and special zones. The research of the Office of the Education Council (2005) recommends that

green spaces should have areas for life-long learning, through technical support establishing an agency that would promote this development in the future. Furthermore, green spaces should be developed into community learning areas, supported by life-long learning networks.

Conclusion

Green spaces are one indicator of quality of life of urban dwellers. This research found that change in the attribute levels indicated that originally public parks did not usually have tree labels, environmental learning centers, special zones or service fee collection. Shifting to a situation in which these attributes are present in green spaces increases satisfaction and advantage for the users. In particular, setting up tree labels that explain the details of each tree species is the attribute that showed the highest willingness to pay. Willingness to pay was equal to 0.90 \$ per person per time. Increasing large shade trees would increase satisfaction and advantage, as well. Users had a willingness to pay for this change amounting to 0.20 \$ for 3.95369 acre.

Acknowledgements

The researchers would like to express their thanks to the Center for Applied Economic Research and the graduate program of the special area, Department of Economics and Resources, which provided support to this research. The team would also like to give thanks to the Office of Public Parks, Office of the Environment and Office of Natural Resource and

Environment Policy and Development, which kindly provided information to the research.

References

Boonyanusith, N. and Kung Shiann-Far. 2014. The role of green infrastructure for adapting Thai local communities to prevent climate change disasters. Rajamangala University of Technology Isan 7(2): 132-143.

Chainad, R. and S. Suvarnajata. 2016. Problems and need for the development of quality of life for underprivileged group, Khon Kaen City Municipality, Khon Kaen Province. Local Administration Journal 9(4): 80-90.

De la Barrera, S. Reyes-Peacock and E. Banzhaf. 2016. Indicators for green spaces in contrasting urban settings. Ecological Indicators 62: 212-219.

Hanemann, W. 1984. Welfare evaluation in contingent valuation experiment with discrete responses. American Journal of Agricultural Economics 66: 332-341.

Holmes, T.P. and W.L. Adamowicz. 2003. Attribute-based methods. 99 171-219. In: P.A. Champ, K.J. Boyle, T.C. Brown, (eds.) A Primer on Nonmarket Valuation. Kluwer Academic Publishers, Dordrecht.

Jennings, T.E., S.R. Jean-Philippe, A. Willcox, J.M. Zobel, N.C. Poudyal and T. Simpson. 2016. The influence of attitudes and perception of tree benefits on park management

priorities. *Landscape and Urban Planning* 153: 122-128.

Ngernsaengsaruay, C. 2014. Increasing green areas in Bangkok, it's never enough. (Online). Available: <http://www.sci.ku.ac.th:8000/sckuforlife/images/doc/05/05.pdf> (September 30, 2016)

Office of the Education Council. 2005. Learning Management of Lifelong Learning. Research report. V.T.C. Communication Limited Partnership, Bangkok. 221 p.

Phoochinda, W. and D. Tengsakul. 2016. Initial assessment of environmental impact of community resource management by using industrial ecology: A case study of Ban Khok Mai Ngam in Si Suk Subdistrict, Si Chomphu District, Khon Kaen Province. *Journal of Community Development and Life Quality* 4(2): 308-320.

Rose, J.M. and M.C.J. Bliemer. 2013. Sample size requirements for stated choice experiments. *Transportation* 40: 1021-1041.

Ruthirako, P. 2016. Sustainable of urban green space management in compact city. *Suthiparitthat Journal* 27(84): 55-76.

The Bangkok Metropolitan Administration. 2017. Database and Monitoring System of Adding Green Areas to Parks and Gardens in Bangkok. (Online). Available: http://203.155.220.118/green-parks-admin//reports/chartbygardenstype_parks7.php (April 03, 2017)

Train, K.E. 2009. *Discrete Choice Methods with Simulation*. 2nd ed. Cambridge University Press, Cambridge. 388 p.

Xiuhua Song, Xinbo Lv and Chuanrong Li. 2014. Willingness and motivation of residents to pay for conservation of urban green spaces in Jinan, China. *Acta Ecologica Sinica* 35: 89-94.

Yasai, U. and J. Tangkittipaporn. 2014. Sustainable development of green space in Chiang Mai municipality. *Journal of Community Development and Life Quality* 2(3): 233-243.